These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18066624)

  • 1. Discrimination of Schroeder-phase harmonic complexes by normal-hearing and cochlear-implant listeners.
    Drennan WR; Longnion JK; Ruffin C; Rubinstein JT
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):138-49. PubMed ID: 18066624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychoacoustic abilities associated with music perception in cochlear implant users.
    Won JH; Drennan WR; Kang RS; Rubinstein JT
    Ear Hear; 2010 Dec; 31(6):796-805. PubMed ID: 20595901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients.
    Dincer D'Alessandro H; Ballantyne D; Boyle PJ; De Seta E; DeVincentiis M; Mancini P
    Ear Hear; 2018; 39(4):679-686. PubMed ID: 29194080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Music perception with temporal cues in acoustic and electric hearing.
    Kong YY; Cruz R; Jones JA; Zeng FG
    Ear Hear; 2004 Apr; 25(2):173-85. PubMed ID: 15064662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral and temporal measures in hybrid cochlear implant users: on the mechanism of electroacoustic hearing benefits.
    Golub JS; Won JH; Drennan WR; Worman TD; Rubinstein JT
    Otol Neurotol; 2012 Feb; 33(2):147-53. PubMed ID: 22215451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinguistic Outcome Measures in Adult Cochlear Implant Users Over the First Year of Implantation.
    Drennan WR; Won JH; Timme AO; Rubinstein JT
    Ear Hear; 2016; 37(3):354-64. PubMed ID: 26656317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychoacoustic performance and music and speech perception in prelingually deafened children with cochlear implants.
    Jung KH; Won JH; Drennan WR; Jameyson E; Miyasaki G; Norton SJ; Rubinstein JT
    Audiol Neurootol; 2012; 17(3):189-97. PubMed ID: 22398954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timbre and speech perception in bimodal and bilateral cochlear-implant listeners.
    Kong YY; Mullangi A; Marozeau J
    Ear Hear; 2012; 33(5):645-59. PubMed ID: 22677814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Music perception by cochlear implant and normal hearing listeners as measured by the Montreal Battery for Evaluation of Amusia.
    Cooper WB; Tobey E; Loizou PC
    Ear Hear; 2008 Aug; 29(4):618-26. PubMed ID: 18469714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of age on melody and timbre perception in simulations of electro-acoustic and cochlear-implant hearing.
    Arehart KH; Croghan NB; Muralimanohar RK
    Ear Hear; 2014; 35(2):195-202. PubMed ID: 24441739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of psychophysical measures to signal processor modifications in cochlear implant users.
    Drennan WR; Won JH; Nie K; Jameyson E; Rubinstein JT
    Hear Res; 2010 Apr; 262(1-2):1-8. PubMed ID: 20144699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of bimodal and bilateral cochlear implant users on speech recognition with competing talker, music perception, affective prosody discrimination, and talker identification.
    Cullington HE; Zeng FG
    Ear Hear; 2011 Feb; 32(1):16-30. PubMed ID: 21178567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception of lexical stress cued by low-frequency pitch and insights into speech perception in noise for cochlear implant users and normal hearing adults.
    Dincer D'Alessandro H; Mancini P
    Eur Arch Otorhinolaryngol; 2019 Oct; 276(10):2673-2680. PubMed ID: 31177325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of the University of Washington Clinical Assessment of Music Perception test.
    Kang R; Nimmons GL; Drennan W; Longnion J; Ruffin C; Nie K; Won JH; Worman T; Yueh B; Rubinstein J
    Ear Hear; 2009 Aug; 30(4):411-8. PubMed ID: 19474735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve.
    Kale S; Micheyl C; Heinz MG
    Adv Exp Med Biol; 2013; 787():109-18. PubMed ID: 23716215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic reflexes to Schroeder-phase harmonic complexes in normal-hearing and hearing-impaired individuals.
    Kubli LR; Leek MR; Dreisbach LE
    Hear Res; 2005 Apr; 202(1-2):1-12. PubMed ID: 15811693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.