BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18066702)

  • 1. Hydrogen as an energy source for the human pathogen Bilophila wadsworthia.
    da Silva SM; Venceslau SS; Fernandes CL; Valente FM; Pereira IA
    Antonie Van Leeuwenhoek; 2008 May; 93(4):381-90. PubMed ID: 18066702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilophila wadsworthia: a unique Gram-negative anaerobic rod.
    Baron EJ
    Anaerobe; 1997; 3(2-3):83-6. PubMed ID: 16887567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium
    Peck SC; Denger K; Burrichter A; Irwin SM; Balskus EP; Schleheck D
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3171-3176. PubMed ID: 30718429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria.
    Maier RJ
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):83-5. PubMed ID: 15667272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhimurium.
    Sawers RG; Jamieson DJ; Higgins CF; Boxer DH
    J Bacteriol; 1986 Oct; 168(1):398-404. PubMed ID: 3531177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Bilophila wadsworthia by specific PCR which targets the taurine:pyruvate aminotransferase gene.
    Laue H; Smits TH; Schumacher UK; Claros MC; Hartemink R; Cook AM
    FEMS Microbiol Lett; 2006 Aug; 261(1):74-9. PubMed ID: 16842362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology.
    Weerakoon DR; Borden NJ; Goodson CM; Grimes J; Olson JW
    Microb Pathog; 2009 Jul; 47(1):8-15. PubMed ID: 19397993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two intriguing Bilophila wadsworthia cases from Hungary.
    Urbán E; Hortobágyi A; Szentpáli K; Nagy E
    J Med Microbiol; 2004 Nov; 53(Pt 11):1167-1169. PubMed ID: 15496398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of host iron transport compounds on growth kinetics and outer-membrane protein expression of Bilophila wadsworthia.
    Daniel C; Bissinger MC; Courcol RJ
    Anaerobe; 1998 Apr; 4(2):103-9. PubMed ID: 16887629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase.
    Zheng Y; Kahnt J; Kwon IH; Mackie RI; Thauer RK
    J Bacteriol; 2014 Nov; 196(22):3840-52. PubMed ID: 25157086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans.
    de Bok FA; Roze EH; Stams AJ
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):283-91. PubMed ID: 12448727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism.
    Hanczár T; Csáki R; Bodrossy L; Murrell JC; Kovács KL
    Arch Microbiol; 2002 Feb; 177(2):167-72. PubMed ID: 11807566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen and nickel metabolism in helicobacter species.
    Benoit SL; Maier RJ
    Ann N Y Acad Sci; 2008 Mar; 1125():242-51. PubMed ID: 18378596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial microcompartments for isethionate desulfonation in the taurine-degrading human-gut bacterium Bilophila wadsworthia.
    Burrichter AG; Dörr S; Bergmann P; Haiß S; Keller A; Fournier C; Franchini P; Isono E; Schleheck D
    BMC Microbiol; 2021 Dec; 21(1):340. PubMed ID: 34903181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and biochemical characterization of a membrane-bound [NiFe]-hydrogenase from a hydrogen-oxidizing, lithotrophic bacterium, Hydrogenophaga sp. AH-24.
    Yoon KS; Sakai Y; Tsukada N; Fujisawa K; Nishihara H
    FEMS Microbiol Lett; 2009 Jan; 290(1):114-20. PubMed ID: 19025569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isethionate is an intermediate in the degradation of sulfoacetate by the human gut pathobiont Bilophila wadsworthia.
    Liu X; Wei Y; Zhang J; Zhou Y; Du Y; Zhang Y
    J Biol Chem; 2023 Aug; 299(8):105010. PubMed ID: 37414148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS.
    Palágyi-Mészáros LS; Maróti J; Latinovics D; Balogh T; Klement E; Medzihradszky KF; Rákhely G; Kovács KL
    FEBS J; 2009 Jan; 276(1):164-74. PubMed ID: 19019079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen metabolism in Shewanella oneidensis MR-1.
    Meshulam-Simon G; Behrens S; Choo AD; Spormann AM
    Appl Environ Microbiol; 2007 Feb; 73(4):1153-65. PubMed ID: 17189435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen metabolism in the hyperthermophilic bacterium Aquifex aeolicus.
    Guiral M; Aubert C; Giudici-Orticoni MT
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):22-4. PubMed ID: 15667254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.