These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 18066730)
1. Attachment point theory revisited: the fouling response to a microtextured matrix. Scardino AJ; Guenther J; de Nys R Biofouling; 2008; 24(1):45-53. PubMed ID: 18066730 [TBL] [Abstract][Full Text] [Related]
2. Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Scardino AJ; Harvey E; De Nys R Biofouling; 2006; 22(1-2):55-60. PubMed ID: 16551561 [TBL] [Abstract][Full Text] [Related]
3. The role of nano-roughness in antifouling. Scardino AJ; Zhang H; Cookson DJ; Lamb RN; de Nys R Biofouling; 2009 Nov; 25(8):757-67. PubMed ID: 20183134 [TBL] [Abstract][Full Text] [Related]
4. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Statz A; Finlay J; Dalsin J; Callow M; Callow JA; Messersmith PB Biofouling; 2006; 22(5-6):391-9. PubMed ID: 17178572 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva. Krishnan S; Wang N; Ober CK; Finlay JA; Callow ME; Callow JA; Hexemer A; Sohn KE; Kramer EJ; Fischer DA Biomacromolecules; 2006 May; 7(5):1449-62. PubMed ID: 16677026 [TBL] [Abstract][Full Text] [Related]
6. Using textured PDMS to prevent settlement and enhance release of marine fouling organisms. Vucko MJ; Poole AJ; Carl C; Sexton BA; Glenn FL; Whalan S; de Nys R Biofouling; 2014 Jan; 30(1):1-16. PubMed ID: 24111593 [TBL] [Abstract][Full Text] [Related]
7. Adrenoceptor compounds prevent the settlement of marine invertebrate larvae: Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) and Hydroides elegans (Polychaeta). Dahms HU; Jin T; Qian PY Biofouling; 2004 Dec; 20(6):313-21. PubMed ID: 15804715 [TBL] [Abstract][Full Text] [Related]
8. The effect of butenolide on behavioral and morphological changes in two marine fouling species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina. Zhang YF; Wang GC; Ying X; Sougrat R; Qian PY Biofouling; 2011 May; 27(5):467-75. PubMed ID: 21604216 [TBL] [Abstract][Full Text] [Related]
9. Reversible anti-settlement activity against Amphibalanus (=Balanus) amphitrite, Bugula neritina, and Hydroides elegans by a nontoxic pharmaceutical compound, mizolastine. Zhou X; Xu Y; Jin C; Qian PY Biofouling; 2009 Nov; 25(8):739-47. PubMed ID: 20183132 [TBL] [Abstract][Full Text] [Related]
10. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. Huggett MJ; Nedved BT; Hadfield MG Biofouling; 2009; 25(5):387-99. PubMed ID: 19306143 [TBL] [Abstract][Full Text] [Related]
11. The effect of epibionts on the susceptibility of the red seaweed Cryptonemia seminervis to herbivory and fouling. da Gama BA; Santos RP; Pereira RC Biofouling; 2008; 24(3):209-18. PubMed ID: 18373291 [TBL] [Abstract][Full Text] [Related]
12. Roughness-dependent removal of settled spores of the green alga Ulva (syn. Enteromorpha) exposed to hydrodynamic forces from a water jet. Granhag LM; Finlay JA; Jonsson PR; Callow JA; Callow ME Biofouling; 2004 Apr; 20(2):117-22. PubMed ID: 15203965 [TBL] [Abstract][Full Text] [Related]
13. Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia. Molino PJ; Campbell E; Wetherbee R Biofouling; 2009 Nov; 25(8):685-94. PubMed ID: 20183127 [TBL] [Abstract][Full Text] [Related]
14. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Pettitt ME; Henry SL; Callow ME; Callow JA; Clare AS Biofouling; 2004 Dec; 20(6):299-311. PubMed ID: 15804714 [TBL] [Abstract][Full Text] [Related]
15. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva. Thompson SE; Callow ME; Callow JA Biofouling; 2010; 26(2):167-78. PubMed ID: 19927239 [TBL] [Abstract][Full Text] [Related]
16. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review. Thompson SEM; Coates JC Biofouling; 2017 May; 33(5):410-432. PubMed ID: 28508711 [TBL] [Abstract][Full Text] [Related]
17. Topographic cues guide the attachment of diatom cells and algal zoospores. Xiao L; Finlay JA; Röhrig M; Mieszkin S; Worgull M; Hölscher H; Callow JA; Callow ME; Grunze M; Rosenhahn A Biofouling; 2018 Jan; 34(1):86-97. PubMed ID: 29283000 [TBL] [Abstract][Full Text] [Related]
18. Effect of background colour on growth and adhesion strength of Ulva sporelings. Finlay JA; Fletcher BR; Callow ME; Callow JA Biofouling; 2008; 24(3):219-25. PubMed ID: 18386189 [TBL] [Abstract][Full Text] [Related]
19. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Rao D; Webb JS; Holmström C; Case R; Low A; Steinberg P; Kjelleberg S Appl Environ Microbiol; 2007 Dec; 73(24):7844-52. PubMed ID: 17965210 [TBL] [Abstract][Full Text] [Related]
20. Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. Yang XX; Wong YH; Zhang Y; Zhang G; Qian PY Biofouling; 2018 May; 34(5):545-556. PubMed ID: 29842799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]