These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1806674)

  • 1. Structure and mineral content in weight-bearing bones following hindlimb suspension in young rats.
    Osako T; Ohira Y; Ito G; Iwashita Y; Norikura T; Maki E
    Jpn J Physiol; 1991; 41(6):923-32. PubMed ID: 1806674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical, morphological and biochemical adaptations of bone and muscle to hindlimb suspension and exercise.
    Shaw SR; Zernicke RF; Vailas AC; DeLuna D; Thomason DB; Baldwin KM
    J Biomech; 1987; 20(3):225-34. PubMed ID: 3584148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does electrical stimulation of the sciatic nerve prevent suspension-induced changes in rat hindlimb bones?
    Wei CN; Ohira ; Tanaka T; Yonemitsu H; Ueda A
    Jpn J Physiol; 1998 Feb; 48(1):33-7. PubMed ID: 9538287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated weightlessness-induced attenuation of testosterone production may be responsible for bone loss.
    Wimalawansa SM; Wimalawansa SJ
    Endocrine; 1999 Jun; 10(3):253-60. PubMed ID: 10484289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Different Types of Low-frequency Electromagnetic Fields Resist Bone Loss Caused by Weightlessness].
    Li WY; Tian YH; Gao YH; Zhu BY; Xi HR; Chen KM
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2019 Feb; 41(1):11-20. PubMed ID: 30837037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of simulated weightlessness on rat osteocalcin and bone calcium.
    Patterson-Buckendahl P; Globus RK; Bikle DD; Cann CE; Morey-Holton E
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R1103-9. PubMed ID: 2589536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone changes during simulated weightlessness in rats.
    Jain PK; Iyer EM; Banerjee PK; Baboo NS
    Indian J Physiol Pharmacol; 2000 Jul; 44(3):359-62. PubMed ID: 10941628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of bone morphology in response to hindlimb suspension of rats.
    Ohira Y; Kawano F; Wang XD; Sudoh M; Ishihara A
    Biol Sci Space; 2003 Oct; 17(3):225-6. PubMed ID: 14676388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of trabecular structure and bone volume by vitamin K(2) in mature rats with long-term tail suspension.
    Iwasaki Y; Yamato H; Murayama H; Sato M; Takahashi T; Ezawa I; Kurokawa K; Fukagawa M
    J Bone Miner Metab; 2002; 20(4):216-22. PubMed ID: 12115067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of bone and tendon to prolonged hindlimb suspension in rats.
    Vailas AC; Deluna DM; Lewis LL; Curwin SL; Roy RR; Alford EK
    J Appl Physiol (1985); 1988 Jul; 65(1):373-6. PubMed ID: 3403480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic exercise as a countermeasure for microgravity-induced bone loss and muscle atrophy in a rat hindlimb suspension model.
    Norman TL; Bradley-Popovich G; Clovis N; Cutlip RG; Bryner RW
    Aviat Space Environ Med; 2000 Jun; 71(6):593-8. PubMed ID: 10870818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resveratrol supplementation influences bone properties in the tibia of hindlimb-suspended mature Fisher 344 × Brown Norway male rats.
    Durbin SM; Jackson JR; Ryan MJ; Gigliotti JC; Alway SE; Tou JC
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1179-88. PubMed ID: 23050779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone loss during simulated weightlessness: a biomechanical and mineralization study in the rat model.
    Garber MA; McDowell DL; Hutton WC
    Aviat Space Environ Med; 2000 Jun; 71(6):586-92. PubMed ID: 10870817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone protection effects of a novel Chinese herbal formula, taikong yangxin prescription, in hindlimb unloaded rats against bone deterioration.
    Ko CH; Siu WS; Chan CL; Koon CM; Fung KP; Li YZ; Li YH; Leung PC
    Chin J Integr Med; 2015 Oct; 21(10):759-64. PubMed ID: 26525547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clenbuterol, a beta 2-receptor agonist, reduces net bone loss in denervated hindlimbs.
    Zeman RJ; Hirschman A; Hirschman ML; Guo G; Etlinger JD
    Am J Physiol; 1991 Aug; 261(2 Pt 1):E285-9. PubMed ID: 1678583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible morphological changes in leg bone following chronic gravitational unloading of growing rats.
    Ohira Y; Kawano F; Wang XD; Sudoh M; Iwashita Y; Majima HJ; Nonaka I
    Life Sci; 2006 Jul; 79(7):686-94. PubMed ID: 16540123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone growth and calcium balance during simulated weightlessness in the rat.
    Roer RD; Dillaman RM
    J Appl Physiol (1985); 1990 Jan; 68(1):13-20. PubMed ID: 2312451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of hindlimb unloading on bone histomorphometry and bone mass in rats].
    Huang DW; Wan YM; Shi ZZ; Huang ZM; Li YH; Ma YJ
    Space Med Med Eng (Beijing); 2003 Dec; 16(6):418-21. PubMed ID: 15008191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of vitamin K on bone metabolism in tail-suspended rats].
    Huang DW; Wan YM; Xie LQ; Ma YJ; Liang WB; Shi ZZ
    Space Med Med Eng (Beijing); 2001 Oct; 14(5):346-9. PubMed ID: 11842850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.