These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18066784)

  • 41. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].
    Brovarets' OO; Hovorun DM
    Ukr Biokhim Zh (1999); 2010; 82(3):55-60. PubMed ID: 21328878
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intermolecular proton transfer in microhydrated guanine-cytosine base pairs: a new mechanism for spontaneous mutation in DNA.
    Cerón-Carrasco JP; Requena A; Zúñiga J; Michaux C; Perpète EA; Jacquemin D
    J Phys Chem A; 2009 Oct; 113(39):10549-56. PubMed ID: 19736955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 6-Chloroisocytosine and 5-bromo-6-methylisocytosine: again, one or two tautomers present in the same crystal?
    Gerhardt V; Bolte M
    Acta Crystallogr C Struct Chem; 2016 Jan; 72(Pt 1):84-93. PubMed ID: 26742833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A time-dependent quantum dynamics investigation of the guanine-cytosine system: a six-dimensional model.
    Villani G
    J Chem Phys; 2008 Mar; 128(11):114306. PubMed ID: 18361570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal-assisted proton transfer reaction in base pairs.
    Matsui T; Shigeta Y; Hirao K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):225-6. PubMed ID: 18029668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Double proton transfer in the isolated and DNA-embedded guanine-cytosine base pair.
    Zoete V; Meuwly M
    J Chem Phys; 2004 Sep; 121(9):4377-88. PubMed ID: 15332989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of one-electron oxidation rate of guanine by base pairing with cytosine derivatives.
    Kawai K; Wata Y; Hara M; Tojo S; Majima T
    J Am Chem Soc; 2002 Apr; 124(14):3586-90. PubMed ID: 11929247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Strikingly different effects of hydrogen bonding on the photodynamics of individual nucleobases in DNA: comparison of guanine and cytosine.
    Zelený T; Ruckenbauer M; Aquino AJ; Müller T; Lankaš F; Dršata T; Hase WL; Nachtigallova D; Lischka H
    J Am Chem Soc; 2012 Aug; 134(33):13662-9. PubMed ID: 22845192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors determining the deriving force of DNA formation: geometrical differences of base pairs, dehydration of bases, and the arginine assisting.
    Sun L; Cukier RI; Bu Y
    J Phys Chem B; 2007 Feb; 111(7):1802-8. PubMed ID: 17266349
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triplex formation involving 2',4'-BNA with 2-pyridone base analogue: efficient and selective recognition of C:G interruption.
    Torigoe H; Hari Y; Obika S; Imanishi T
    Nucleic Acids Res Suppl; 2001; (1):281-2. PubMed ID: 12836374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of Ia and IIa group cations with the guanine site in cytosine-guanine nucleic acid base pair: an ab initio Hartree Fock study in the absence of basis set superposition error.
    Famulari A; Moroni F; Sironi M; Raimondi M
    Comput Chem; 2000 May; 24(3-4):341-9. PubMed ID: 10816004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical study on the binding mechanism between N6-methyladenine and natural DNA bases.
    Song QX; Ding ZD; Liu JH; Li Y; Wang HJ
    J Mol Model; 2013 Mar; 19(3):1089-98. PubMed ID: 23138643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coupling between hydrogen atoms transfer and stacking interaction in adenine-thymine/guanine-cytosine complexes: a theoretical study.
    Villani G
    J Phys Chem B; 2014 May; 118(20):5439-52. PubMed ID: 24813562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new modified cytosine base capable of base pairing with guanine using four hydrogen bonds.
    Yamada K; Masaki Y; Tsunoda H; Ohkubo A; Seio K; Sekine M
    Org Biomol Chem; 2014 Apr; 12(14):2255-62. PubMed ID: 24569493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrafast two-dimensional infrared spectroscopy of guanine-cytosine base pairs in DNA oligomers.
    Greve C; Elsaesser T
    J Phys Chem B; 2013 Nov; 117(45):14009-17. PubMed ID: 24127664
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ESI-MS characterization of a novel pyrrole-inosine nucleoside that interacts with guanine bases.
    Pierce SE; Sherman CL; Jayawickramarajah J; Lawrence CM; Sessler JL; Brodbelt JS
    Anal Chim Acta; 2008 Oct; 627(1):129-35. PubMed ID: 18790136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electron affinity of the guanine-cytosine base pair and structural perturbations upon anion formation.
    Richardson NA; Wesolowski SS; Schaefer HF
    J Am Chem Soc; 2002 Aug; 124(34):10163-70. PubMed ID: 12188681
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Structural and energetic properties of the four configurations of the A.T and G.C DNA base pairs].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):104-10. PubMed ID: 24319980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.