BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18066861)

  • 1. Hydration regulates the thermodynamic stability of DNA structures under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(6-7):589-95. PubMed ID: 18066861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    J Am Chem Soc; 2006 Jun; 128(24):7957-63. PubMed ID: 16771510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.
    Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N
    J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors regulating thermodynamic stability of DNA structures under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2006; (50):203-4. PubMed ID: 17150888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors.
    Zhang DH; Fujimoto T; Saxena S; Yu HQ; Miyoshi D; Sugimoto N
    Biochemistry; 2010 Jun; 49(21):4554-63. PubMed ID: 20420470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stability and hydration state of DNA G-quadruplex regulated by loop regions.
    Fujimoto T; Miyoshi D; Tateishi-Karimata H; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2009; (53):237-8. PubMed ID: 19749348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular dichroism spectra of DNA quadruplexes [d(G(5)T(5))](4) as formed with G(4) and T(4) tetrads and [d(G(5)T(5)). d(A(5)C(5))]2 as formed with Watson-Crick-like (G-C)(2) and (T-A)(2) tetrads.
    Ito H; Tanaka S; Miyasaka M
    Biopolymers; 2002 Oct; 65(2):61-80. PubMed ID: 12209457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions.
    Fujimoto T; Nakano S; Sugimoto N; Miyoshi D
    J Phys Chem B; 2013 Jan; 117(4):963-72. PubMed ID: 23153339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of three-way junctions of DNA under molecular crowding conditions.
    Muhuri S; Mimura K; Miyoshi D; Sugimoto N
    J Am Chem Soc; 2009 Jul; 131(26):9268-80. PubMed ID: 19566098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of DNA structures under molecular crowding conditions with neutral and positive charged cosolutes.
    Miyoshi D; Nakamura K; Muhuli S; Karimata HT; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2008; (52):413-4. PubMed ID: 18776429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure monomorphism of RNA G-quadruplex that is independent of surrounding condition.
    Zhang DH; Zhi GY
    J Biotechnol; 2010 Oct; 150(1):6-10. PubMed ID: 20670662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking.
    Olsen CM; Gmeiner WH; Marky LA
    J Phys Chem B; 2006 Apr; 110(13):6962-9. PubMed ID: 16571009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and structure of telomeric DNA sequences forming quadruplexes containing four G-tetrads with different topological arrangements.
    Petraccone L; Erra E; Esposito V; Randazzo A; Mayol L; Nasti L; Barone G; Giancola C
    Biochemistry; 2004 Apr; 43(16):4877-84. PubMed ID: 15096057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and stability of DNA quadruplexes under molecular crowding conditions.
    Karimata H; Miyoshi D; Sugimoto N
    Nucleic Acids Symp Ser (Oxf); 2005; (49):239-40. PubMed ID: 17150722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human telomeric G-quadruplex formed from duplex under near physiological conditions: spectroscopic evidence and kinetics.
    Zhou J; Wei C; Jia G; Wang X; Feng Z; Li C
    Biochimie; 2009 Sep; 91(9):1104-11. PubMed ID: 19524012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetics of i-DNA tetraplex structures formed intermolecularly by d(TC5) and intramolecularly by d[(C5T3)3C5].
    Völker J; Klump HH; Breslauer KJ
    Biopolymers; 2007 Jun; 86(2):136-47. PubMed ID: 17330895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural competition involving G-quadruplex DNA and its complement.
    Li W; Miyoshi D; Nakano S; Sugimoto N
    Biochemistry; 2003 Oct; 42(40):11736-44. PubMed ID: 14529284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures and stabilities of small DNA dumbbells with Watson-Crick and Hoogsteen base pairs.
    Escaja N; Gómez-Pinto I; Rico M; Pedroso E; González C
    Chembiochem; 2003 Jul; 4(7):623-32. PubMed ID: 12851932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions.
    Vorlícková M; Bednárová K; Kejnovská I; Kypr J
    Biopolymers; 2007 May; 86(1):1-10. PubMed ID: 17211886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sole and stable RNA duplexes of G-rich sequences located in the 5'-untranslated region of protooncogenes.
    Saxena S; Miyoshi D; Sugimoto N
    Biochemistry; 2010 Aug; 49(33):7190-201. PubMed ID: 20672842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.