BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18067006)

  • 21. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes.
    Colombo M; Mirandola L; Platonova N; Apicella L; Basile A; Figueroa AJ; Cobos E; Chiriva-Internati M; Chiaramonte R
    Leukemia; 2013 Apr; 27(5):1009-18. PubMed ID: 23307030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma.
    Ehrlich LA; Chung HY; Ghobrial I; Choi SJ; Morandi F; Colla S; Rizzoli V; Roodman GD; Giuliani N
    Blood; 2005 Aug; 106(4):1407-14. PubMed ID: 15878977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation.
    Groen RW; de Rooij MF; Kocemba KA; Reijmers RM; de Haan-Kramer A; Overdijk MB; Aalders L; Rozemuller H; Martens AC; Bergsagel PL; Kersten MJ; Pals ST; Spaargaren M
    Haematologica; 2011 Nov; 96(11):1653-61. PubMed ID: 21828122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of bone destruction in multiple myeloma.
    Terpos E; Christoulas D; Gavriatopoulou M; Dimopoulos MA
    Eur J Cancer Care (Engl); 2017 Nov; 26(6):. PubMed ID: 28940410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma.
    Heider U; Langelotz C; Jakob C; Zavrski I; Fleissner C; Eucker J; Possinger K; Hofbauer LC; Sezer O
    Clin Cancer Res; 2003 Apr; 9(4):1436-40. PubMed ID: 12684416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the bone marrow microenvironment in multiple myeloma.
    Roodman GD
    J Bone Miner Res; 2002 Nov; 17(11):1921-5. PubMed ID: 12412796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteogenic differentiation of mesenchymal stem cells in multiple myeloma: identification of potential therapeutic targets.
    Giuliani N; Mangoni M; Rizzoli V
    Exp Hematol; 2009 Aug; 37(8):879-86. PubMed ID: 19446662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights in myeloma-induced osteolysis.
    Barillé-Nion S; Bataille R
    Leuk Lymphoma; 2003 Sep; 44(9):1463-7. PubMed ID: 14565645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pathogenesis of the bone disease of multiple myeloma.
    Edwards CM; Zhuang J; Mundy GR
    Bone; 2008 Jun; 42(6):1007-13. PubMed ID: 18406675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoblasts promote migration and invasion of myeloma cells through upregulation of matrix metalloproteinases, urokinase plasminogen activator, hepatocyte growth factor and activation of p38 MAPK.
    Hecht M; Heider U; Kaiser M; von Metzler I; Sterz J; Sezer O
    Br J Haematol; 2007 Aug; 138(4):446-58. PubMed ID: 17593251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo.
    Pennisi A; Li X; Ling W; Khan S; Zangari M; Yaccoby S
    Am J Hematol; 2009 Jan; 84(1):6-14. PubMed ID: 18980173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease.
    Silvestris F; Cafforio P; Tucci M; Grinello D; Dammacco F
    Br J Haematol; 2003 Jul; 122(1):39-52. PubMed ID: 12823344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The multiple myeloma bone eco-system and its relation to oncogenesis.
    Bataille R
    Morphologie; 2015 Jun; 99(325):31-7. PubMed ID: 26005000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model.
    Reagan MR; Mishima Y; Glavey SV; Zhang Y; Manier S; Lu ZN; Memarzadeh M; Zhang Y; Sacco A; Aljawai Y; Shi J; Tai YT; Ready JE; Kaplan DL; Roccaro AM; Ghobrial IM
    Blood; 2014 Nov; 124(22):3250-9. PubMed ID: 25205118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cytokines in bone diseases. Cytokines and myeloma bone disease].
    Abe M
    Clin Calcium; 2010 Oct; 20(10):1474-80. PubMed ID: 20890028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation.
    Clines GA; Mohammad KS; Bao Y; Stephens OW; Suva LJ; Shaughnessy JD; Fox JW; Chirgwin JM; Guise TA
    Mol Endocrinol; 2007 Feb; 21(2):486-98. PubMed ID: 17068196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclized Oligopeptide Targeting LRP5/6-DKK1 Interaction Reduces the Growth of Tumor Burden in a Multiple Myeloma Mouse Model.
    Park BM; Kim EJ; Nam HJ; Zhang D; Bae CH; Kang M; Kim H; Lee W; Bogen B; Lim SK
    Yonsei Med J; 2017 May; 58(3):505-513. PubMed ID: 28332354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SRC kinase inhibition with saracatinib limits the development of osteolytic bone disease in multiple myeloma.
    Heusschen R; Muller J; Binsfeld M; Marty C; Plougonven E; Dubois S; Mahli N; Moermans K; Carmeliet G; LĂ©onard A; Baron F; Beguin Y; Menu E; Cohen-Solal M; Caers J
    Oncotarget; 2016 May; 7(21):30712-29. PubMed ID: 27095574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of the PI3K inhibitor BKM120 on tumour growth and osteolytic bone disease in multiple myeloma.
    Martin SK; Gan ZY; Fitter S; To LB; Zannettino AC
    Leuk Res; 2015 Mar; 39(3):380-7. PubMed ID: 25624048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The osteoblastic niche in the context of multiple myeloma.
    Toscani D; Bolzoni M; Accardi F; Aversa F; Giuliani N
    Ann N Y Acad Sci; 2015 Jan; 1335():45-62. PubMed ID: 25424768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.