BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 18067166)

  • 1. Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds.
    Rücker M; Laschke MW; Junker D; Carvalho C; Tavassol F; Mülhaupt R; Gellrich NC; Menger MD
    J Biomed Mater Res A; 2008 Sep; 86(4):1002-11. PubMed ID: 18067166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.
    Modulevsky DJ; Cuerrier CM; Pelling AE
    PLoS One; 2016; 11(6):e0157894. PubMed ID: 27328066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence (AI) Based Analysis of
    Salvante ERG; Popoiu AV; Barb AC; Cosma AA; Fenesan MP; Saxena AK; Popoiu TA; Boia ES; Stanciulescu MC; Caplar BD; Dorobantu FR; Cimpean AM
    In Vivo; 2024; 38(2):620-629. PubMed ID: 38418141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers.
    Ghanaati S; Webber MJ; Unger RE; Orth C; Hulvat JF; Kiehna SE; Barbeck M; Rasic A; Stupp SI; Kirkpatrick CJ
    Biomaterials; 2009 Oct; 30(31):6202-12. PubMed ID: 19683342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo high-content evaluation of three-dimensional scaffolds biocompatibility.
    Oliveira MB; Ribeiro MP; Miguel SP; Neto AI; Coutinho P; Correia IJ; Mano JF
    Tissue Eng Part C Methods; 2014 Nov; 20(11):851-64. PubMed ID: 24568682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models.
    Bratlie KM; Dang TT; Lyle S; Nahrendorf M; Weissleder R; Langer R; Anderson DG
    PLoS One; 2010 Apr; 5(4):e10032. PubMed ID: 20386609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational Research for Orthopedic Bone Graft Development.
    Vilela MJC; Colaço BJA; Ventura J; Monteiro FJM; Salgado CL
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric Optical Bioimaging Reveals the Fate of Epoxy Crosslinked Biomeshes in the Mouse Subcutaneous Implantation Model.
    Elagin V; Kuznetsova D; Grebenik E; Zolotov DA; Istranov L; Zharikova T; Istranova E; Polozova A; Reunov D; Kurkov A; Shekhter A; Gafarova ER; Asadchikov V; Borisov SM; Dmitriev RI; Zagaynova E; Timashev P
    Front Bioeng Biotechnol; 2020; 8():107. PubMed ID: 32140465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization.
    Wu V; Helder MN; Bravenboer N; Ten Bruggenkate CM; Jin J; Klein-Nulend J; Schulten EAJM
    Stem Cells Int; 2019; 2019():6279721. PubMed ID: 32082383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Composite Scaffold With Phosphoserine Signaling for Bone Tissue Engineering Application.
    Salgado CL; Teixeira BIB; Monteiro FJM
    Front Bioeng Biotechnol; 2019; 7():206. PubMed ID: 31552233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymers for 3D Printing and Customized Additive Manufacturing.
    Ligon SC; Liska R; Stampfl J; Gurr M; Mülhaupt R
    Chem Rev; 2017 Aug; 117(15):10212-10290. PubMed ID: 28756658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues.
    Peters EB
    Tissue Eng Part B Rev; 2018 Feb; 24(1):1-24. PubMed ID: 28548628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alveolar ridge preservation with autologous particulated dentin-a case series.
    Valdec S; Pasic P; Soltermann A; Thoma D; Stadlinger B; Rücker M
    Int J Implant Dent; 2017 Dec; 3(1):12. PubMed ID: 28361377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-phase osteogenic and vasculogenic engineered tissue for bone formation.
    Rao RR; Vigen ML; Peterson AW; Caldwell DJ; Putnam AJ; Stegemann JP
    Tissue Eng Part A; 2015 Feb; 21(3-4):530-40. PubMed ID: 25228401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hydroxyapatite on endothelial network formation in collagen/fibrin composite hydrogels in vitro and in vivo.
    Rao RR; Ceccarelli J; Vigen ML; Gudur M; Singh R; Deng CX; Putnam AJ; Stegemann JP
    Acta Biomater; 2014 Jul; 10(7):3091-7. PubMed ID: 24657675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of protein adsorption on bioceramics.
    Wang K; Zhou C; Hong Y; Zhang X
    Interface Focus; 2012 Jun; 2(3):259-77. PubMed ID: 23741605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved angiogenic cell penetration in vitro and in vivo in collagen scaffolds with internal channels.
    Yahyouche A; Zhidao X; Triffitt JT; Czernuszka JT; Clover AJ
    J Mater Sci Mater Med; 2013 Jun; 24(6):1571-80. PubMed ID: 23645077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Tissue engineering using porous polyethylene implants].
    Strieth S
    HNO; 2013 Mar; 61(3):211-6. PubMed ID: 23467889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering.
    Pardue EL; Ibrahim S; Ramamurthi A
    Organogenesis; 2008 Oct; 4(4):203-14. PubMed ID: 19337400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies.
    Koehl GE; Gaumann A; Geissler EK
    Clin Exp Metastasis; 2009; 26(4):329-44. PubMed ID: 19190882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.