These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18067347)

  • 1. The X1 method for accurate and efficient prediction of heats of formation.
    Wu J; Xu X
    J Chem Phys; 2007 Dec; 127(21):214105. PubMed ID: 18067347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of heats of formation by a combined method of B3LYP and neural network correction.
    Wu J; Xu X
    J Comput Chem; 2009 Jul; 30(9):1424-44. PubMed ID: 19037856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the B3LYP bond energies by using the X1 method.
    Wu J; Xu X
    J Chem Phys; 2008 Oct; 129(16):164103. PubMed ID: 19045243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach.
    Duan XM; Song GL; Li ZH; Wang XJ; Chen GH; Fan KN
    J Chem Phys; 2004 Oct; 121(15):7086-95. PubMed ID: 15473774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian-4 theory.
    Curtiss LA; Redfern PC; Raghavachari K
    J Chem Phys; 2007 Feb; 126(8):084108. PubMed ID: 17343441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The X1s method for accurate bond dissociation energies.
    Wu J; Ying Zhang I; Xu X
    Chemphyschem; 2010 Aug; 11(12):2561-7. PubMed ID: 20669214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved modification for the density-functional theory calculation of thermodynamic properties for C-H-O composite compounds.
    Liu MH; Chen C; Hong YS
    J Chem Phys; 2005 Feb; 122(6):064312. PubMed ID: 15740377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction enthalpies using the neural-network-based X1 approach: the important choice of input descriptors.
    Wodrich MD; Corminboeuf C
    J Phys Chem A; 2009 Apr; 113(13):3285-90. PubMed ID: 19275214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient calculation of heats of formation.
    Ohlinger WS; Klunzinger PE; Deppmeier BJ; Hehre WJ
    J Phys Chem A; 2009 Mar; 113(10):2165-75. PubMed ID: 19222177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens.
    Tubert-Brohman I; Guimarães CR; Repasky MP; Jorgensen WL
    J Comput Chem; 2004 Jan; 25(1):138-50. PubMed ID: 14635001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.
    Khvostichenko D; Choi A; Boulatov R
    J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heats of formation and bond dissociation energies of the halosilanes, methylhalosilanes, and halomethylsilanes.
    Grant DJ; Dixon DA
    J Phys Chem A; 2009 Apr; 113(15):3656-61. PubMed ID: 19320492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Agrawal PM; Komanduri R
    J Chem Phys; 2009 May; 130(18):184102. PubMed ID: 19449903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heats of formation in a series of nitroester energetic compounds: a theoretical study.
    Li X; Tang Z; Zhang X; Yang X
    J Hazard Mater; 2009 Jun; 165(1-3):372-8. PubMed ID: 19019536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diammoniosilane: computational prediction of the thermodynamic properties of a potential chemical hydrogen storage system.
    Grant DJ; Arduengo AJ; Dixon DA
    J Phys Chem A; 2009 Jan; 113(4):750-5. PubMed ID: 19123851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heats of formation of beryllium, boron, aluminum, and silicon re-examined by means of W4 theory.
    Karton A; Martin JM
    J Phys Chem A; 2007 Jul; 111(26):5936-44. PubMed ID: 17567115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction for electron affinities of the radicals derived from the halide benzene.
    Xu W; Gao A
    J Chem Phys; 2005 Aug; 123(8):084320. PubMed ID: 16164304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate interaction energies at density functional theory level by means of an efficient dispersion correction.
    Krishtal A; Vanommeslaeghe K; Olasz A; Veszprémi T; Van Alsenoy C; Geerlings P
    J Chem Phys; 2009 May; 130(17):174101. PubMed ID: 19425763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond additivity corrections for G3B3 and G3MP2B3 quantum chemistry methods.
    Anantharaman B; Melius CF
    J Phys Chem A; 2005 Mar; 109(8):1734-47. PubMed ID: 16833499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The addition of hydrogen atoms to diacetylene and the heats of formation of i-C4H3 and n-C4H3.
    Klippenstein SJ; Miller JA
    J Phys Chem A; 2005 May; 109(19):4285-95. PubMed ID: 16833758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.