BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

678 related articles for article (PubMed ID: 18067397)

  • 1. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials.
    Nirmalanandhan VS; Dressler MR; Shearn JT; Juncosa-Melvin N; Rao M; Gooch C; Bradica G; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):919-23. PubMed ID: 18067397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation.
    Shearn JT; Juncosa-Melvin N; Boivin GP; Galloway MT; Goodwin W; Gooch C; Dunn MG; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):848-54. PubMed ID: 18067388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of length of the engineered tendon construct on its structure-function relationships in culture.
    Nirmalanandhan VS; Rao M; Sacks MS; Haridas B; Butler DL
    J Biomech; 2007; 40(11):2523-9. PubMed ID: 17258749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair.
    Juncosa-Melvin N; Matlin KS; Holdcraft RW; Nirmalanandhan VS; Butler DL
    Tissue Eng; 2007 Jun; 13(6):1219-26. PubMed ID: 17518715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation.
    Butler DL; Juncosa-Melvin N; Boivin GP; Galloway MT; Shearn JT; Gooch C; Awad H
    J Orthop Res; 2008 Jan; 26(1):1-9. PubMed ID: 17676628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition.
    Kobayashi M; Spector M
    Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles.
    Chen JL; Yin Z; Shen WL; Chen X; Heng BC; Zou XH; Ouyang HW
    Biomaterials; 2010 Dec; 31(36):9438-51. PubMed ID: 20870282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair.
    Juncosa-Melvin N; Shearn JT; Boivin GP; Gooch C; Galloway MT; West JR; Nirmalanandhan VS; Bradica G; Butler DL
    Tissue Eng; 2006 Aug; 12(8):2291-300. PubMed ID: 16968169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel.
    Nöth U; Schupp K; Heymer A; Kall S; Jakob F; Schütze N; Baumann B; Barthel T; Eulert J; Hendrich C
    Cytotherapy; 2005; 7(5):447-55. PubMed ID: 16236634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioreactor for biaxial mechanical stimulation to tissue engineered constructs.
    Wartella KA; Wayne JS
    J Biomech Eng; 2009 Apr; 131(4):044501. PubMed ID: 19275443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct.
    Nirmalanandhan VS; Rao M; Shearn JT; Juncosa-Melvin N; Gooch C; Butler DL
    J Biomech; 2008; 41(4):822-8. PubMed ID: 18164020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel geometries for tissue-engineered tendonous collagen constructs.
    Shi Y; Rittman L; Vesely I
    Tissue Eng; 2006 Sep; 12(9):2601-9. PubMed ID: 16995793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon.
    Dressler MR; Butler DL; Boivin GP
    J Orthop Res; 2005 Mar; 23(2):287-93. PubMed ID: 15734238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering.
    Kawazoe N; Inoue C; Tateishi T; Chen G
    Biotechnol Prog; 2010; 26(3):819-26. PubMed ID: 20039440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair.
    Juncosa-Melvin N; Boivin GP; Gooch C; Galloway MT; West JR; Dunn MG; Butler DL
    Tissue Eng; 2006 Feb; 12(2):369-79. PubMed ID: 16548695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering.
    Kryger GS; Chong AK; Costa M; Pham H; Bates SJ; Chang J
    J Hand Surg Am; 2007; 32(5):597-605. PubMed ID: 17481995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells.
    Sahoo S; Toh SL; Goh JC
    Biomaterials; 2010 Apr; 31(11):2990-8. PubMed ID: 20089300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.