BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18067593)

  • 21. Dual modulation of synaptic transmission in the nucleus tractus solitarius by prostaglandin E2 synthesized downstream of IL-1beta.
    Marty V; El Hachmane M; Amédée T
    Eur J Neurosci; 2008 Jun; 27(12):3132-50. PubMed ID: 18598258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses to glossopharyngeal stimulus in the early embryonic chick brainstem: spatiotemporal patterns in three dimensions from repeated multiple-site optical recording of electrical activity.
    Sato K; Momose-Sato Y; Sakai T; Hirota A; Kamino K
    J Neurosci; 1995 Mar; 15(3 Pt 2):2123-40. PubMed ID: 7891156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
    Wan S; Browning KN
    Am J Physiol Gastrointest Liver Physiol; 2008 Mar; 294(3):G757-63. PubMed ID: 18202107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential expression of Nk1 and NK3 neurokinin receptors in neurons of the nucleus tractus solitarius and the dorsal vagal motor nucleus of the rat and mouse.
    Le Brun I; Dufour A; Crest M; Szabó G; Erdelyi F; Baude A
    Neuroscience; 2008 Mar; 152(1):56-64. PubMed ID: 18222044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical approaches to embryonic development of neural functions in the brainstem.
    Momose-Sato Y; Sato K; Kamino K
    Prog Neurobiol; 2001 Feb; 63(2):151-97. PubMed ID: 11124445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous depolarization wave in the mouse embryo: origin and large-scale propagation over the CNS identified with voltage-sensitive dye imaging.
    Momose-Sato Y; Nakamori T; Sato K
    Eur J Neurosci; 2012 Apr; 35(8):1230-41. PubMed ID: 22339904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical mapping of neural responses in the embryonic rat brainstem with reference to the early functional organization of vagal nuclei.
    Sato K; Momose-Sato Y; Hirota A; Sakai T; Kamino K
    J Neurosci; 1998 Feb; 18(4):1345-62. PubMed ID: 9454844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical survey of initial expression of synaptic function in the embryonic chick trigeminal sensory nucleus.
    Momose-Sato Y; Sato K
    Neurosci Lett; 2014 Jun; 570():92-6. PubMed ID: 24769319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spreading depolarization waves triggered by vagal stimulation in the embryonic chick brain: optical evidence for intercellular communication in the developing central nervous system.
    Momose-Sato Y; Sato K; Mochida H; Yazawa I; Sasaki S; Kamino K
    Neuroscience; 2001; 102(2):245-62. PubMed ID: 11166111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-methyl-D-aspartate triggers neonatal rat hypoglossal motoneurons in vitro to express rhythmic bursting with unusual Mg2+ sensitivity.
    Sharifullina E; Ostroumov K; Grandolfo M; Nistri A
    Neuroscience; 2008 Jun; 154(2):804-20. PubMed ID: 18468805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metaplasticity governs natural experience-driven plasticity of nascent embryonic brain circuits.
    Dunfield D; Haas K
    Neuron; 2009 Oct; 64(2):240-50. PubMed ID: 19874791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical activity and development of neural circuits.
    Zhang LI; Poo MM
    Nat Neurosci; 2001 Nov; 4 Suppl():1207-14. PubMed ID: 11687831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of synaptic networks in the mouse vagal pathway revealed by optical mapping with a voltage-sensitive dye.
    Momose-Sato Y; Sato K
    Eur J Neurosci; 2016 Jul; 44(2):1906-18. PubMed ID: 27207499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary vagal projection to the contralateral non-NTS region in the embryonic chick brainstem revealed by optical recording.
    Momose-Sato Y; Sato K
    J Membr Biol; 2005 Nov; 208(2):183-91. PubMed ID: 16645746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity.
    Momose-Sato Y; Sato K
    IBRO Rep; 2020 Dec; 9():14-23. PubMed ID: 32642591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serotoninergic modulation of sensory transmission to brainstem reticulospinal cells.
    Antri M; Auclair F; Albrecht J; Djeudjang N; Dubuc R
    Eur J Neurosci; 2008 Aug; 28(4):655-67. PubMed ID: 18702689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.