These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18067945)

  • 1. Effect of water treatment processes on Cryptosporidium infectivity.
    Keegan A; Daminato D; Saint CP; Monis PT
    Water Res; 2008 Mar; 42(6-7):1805-11. PubMed ID: 18067945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drinking water treatment processes for removal of Cryptosporidium and Giardia.
    Betancourt WQ; Rose JB
    Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential molecular tools for assessing the public health risk associated with waterborne Cryptosporidium oocysts.
    Kothavade RJ
    J Med Microbiol; 2012 Aug; 61(Pt 8):1039-1051. PubMed ID: 22628454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.
    Korich DG; Mead JR; Madore MS; Sinclair NA; Sterling CR
    Appl Environ Microbiol; 1990 May; 56(5):1423-8. PubMed ID: 2339894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated cryptosporidium assay to determine oocyst density, infectivity, and genotype for risk assessment of source and reuse water.
    King B; Fanok S; Phillips R; Swaffer B; Monis P
    Appl Environ Microbiol; 2015 May; 81(10):3471-81. PubMed ID: 25769833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Culture Infectivity to Assess Chlorine Disinfection of Cryptosporidium Oocysts in Water.
    Murphy JL; Arrowood MJ
    Methods Mol Biol; 2020; 2052():283-302. PubMed ID: 31452168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and differentiation of Cryptosporidium oocysts in water by PCR-RFLP.
    Xiao L; Lal AA; Jiang J
    Methods Mol Biol; 2004; 268():163-76. PubMed ID: 15156028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bromine and Chlorine Disinfection of
    Coleman CK; Kim J; Bailey ES; Abebe LS; Brown J; Simmons OD; Sobsey MD
    Environ Sci Technol; 2023 Nov; 57(47):18744-18753. PubMed ID: 37220325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts.
    Peeters JE; Mazás EA; Masschelein WJ; Villacorta Martiez de Maturana I; Debacker E
    Appl Environ Microbiol; 1989 Jun; 55(6):1519-22. PubMed ID: 2764564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst.
    Carey CM; Lee H; Trevors JT
    Water Res; 2004 Feb; 38(4):818-62. PubMed ID: 14769405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging of Cryptosporidium parvum oocysts in river water and their susceptibility to disinfection by chlorine and monochloramine.
    Chauret C; Nolan K; Chen P; Springthorpe S; Sattar S
    Can J Microbiol; 1998 Dec; 44(12):1154-60. PubMed ID: 10383227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples.
    Liang Z; Keeley A
    Water Res; 2012 Nov; 46(18):5941-53. PubMed ID: 22980572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The efficacy of water ozonation on the inactivation of oocysts of Cryptosporidium].
    Perrine D; Georges P; Langlais B
    Bull Acad Natl Med; 1990; 174(6):845-50; discussion 850-1. PubMed ID: 2271989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical processes affecting Cryptosporidium oocyst survival in the environment.
    King BJ; Monis PT
    Parasitology; 2007 Mar; 134(Pt 3):309-23. PubMed ID: 17096874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptosporidium Attenuation across the Wastewater Treatment Train: Recycled Water Fit for Purpose.
    King B; Fanok S; Phillips R; Lau M; van den Akker B; Monis P
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28039137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Die-off of Cryptosporidium parvum in soil and wastewater effluents.
    Nasser AM; Tweto E; Nitzan Y
    J Appl Microbiol; 2007 Jan; 102(1):169-76. PubMed ID: 17184332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of low and high temperatures on infectivity of Cryptosporidium muris oocysts suspended in water.
    Neumayerová H; Koudela B
    Vet Parasitol; 2008 May; 153(3-4):197-202. PubMed ID: 18372114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between Cryptosporidium oocysts and water treatment coagulants.
    Bustamante HA; Shanker SR; Pashley RM; Karaman ME
    Water Res; 2001 Sep; 35(13):3179-89. PubMed ID: 11487115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water.
    Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; McGuigan KG
    Appl Environ Microbiol; 2005 Mar; 71(3):1653-4. PubMed ID: 15746372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and sensitive detection of single cryptosporidium oocysts from archived glass slides.
    Sunnotel O; Snelling WJ; Xiao L; Moule K; Moore JE; Millar BC; Dooley JS; Lowery CJ
    J Clin Microbiol; 2006 Sep; 44(9):3285-91. PubMed ID: 16954262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.