These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 18067945)

  • 21. A simple method for extracting DNA from Cryptosporidium oocysts using the anionic surfactant LSS.
    Sekikawa T; Kawasaki Y; Katayama Y; Iwahori K
    N Biotechnol; 2011 Dec; 29(1):139-43. PubMed ID: 21924387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using ultraviolet light for disinfection of finished water.
    Bukhari Z; Abrams F; LeChevallier M
    Water Sci Technol; 2004; 50(1):173-8. PubMed ID: 15318505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing UV reactor performance for treatment of finished water.
    Bukhari Z; LeChevallier M
    Water Sci Technol; 2003; 47(3):179-84. PubMed ID: 12639026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity.
    King BJ; Keegan AR; Monis PT; Saint CP
    Appl Environ Microbiol; 2005 Jul; 71(7):3848-57. PubMed ID: 16000797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Infectivity of Cryptosporidium parvum oocysts stored in water at environmental temperatures.
    Fayer R; Trout JM; Jenkins MC
    J Parasitol; 1998 Dec; 84(6):1165-9. PubMed ID: 9920307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection.
    Gómez-Couso H; Fontán-Sainz M; Fernández-Alonso J; Ares-Mazás E
    Parasitology; 2009 Apr; 136(4):393-9. PubMed ID: 19195413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a sensitive detection system for Cryptosporidium in environmental samples.
    Ramirez NE; Sreevatsan S
    Vet Parasitol; 2006 Mar; 136(3-4):201-13. PubMed ID: 16387443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal and fate of Cryptosporidium in dissolved air drinking water treatment plants.
    Edzwald JK; Tobiason JE; Dunn H; Kaminski G; Galant P
    Water Sci Technol; 2001; 43(8):51-7. PubMed ID: 11394279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative risk assessment of Cryptosporidium in tap water in Ireland.
    Cummins E; Kennedy R; Cormican M
    Sci Total Environ; 2010 Jan; 408(4):740-53. PubMed ID: 19945145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators.
    Chauret CP; Radziminski CZ; Lepuil M; Creason R; Andrews RC
    Appl Environ Microbiol; 2001 Jul; 67(7):2993-3001. PubMed ID: 11425712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water.
    Chen F; Huang K; Qin S; Zhao Y; Pan C
    Vet Parasitol; 2007 Nov; 150(1-2):13-7. PubMed ID: 17954011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of Cryptosporidium parvum under chlorinated recreational water conditions.
    Shields JM; Hill VR; Arrowood MJ; Beach MJ
    J Water Health; 2008 Dec; 6(4):513-20. PubMed ID: 18401116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples.
    Carey CM; Lee H; Trevors JT
    J Microbiol Methods; 2006 Nov; 67(2):363-72. PubMed ID: 16730821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative detection of Cryptosporidium oocyst in water source based on 18S rRNA by alternately binding probe competitive reverse transcription polymerase chain reaction (ABC-RT-PCR).
    Kishida N; Miyata R; Furuta A; Izumiyama S; Tsuneda S; Sekiguchi Y; Noda N; Akiba M
    Water Res; 2012 Jan; 46(1):187-94. PubMed ID: 22088270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryptosporidium parvum oocysts recovered from water by the membrane filter dissolution method retain their infectivity.
    Graczyk TK; Fayer R; Cranfield MR; Owens R
    J Parasitol; 1997 Feb; 83(1):111-4. PubMed ID: 9057705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and evaluation of a reverse transcription-loop-mediated isothermal amplification assay for rapid and high-sensitive detection of Cryptosporidium in water samples.
    Inomata A; Kishida N; Momoda T; Akiba M; Izumiyama S; Yagita K; Endo T
    Water Sci Technol; 2009; 60(8):2167-72. PubMed ID: 19844064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of infectious Cryptosporidium oocysts by cell culture immunofluorescence assay: applicability to environmental samples.
    Schets FM; Engels GB; During M; de Roda Husman AM
    Appl Environ Microbiol; 2005 Nov; 71(11):6793-8. PubMed ID: 16269711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry.
    Angles ML; Chandy JP; Cox PT; Fisher IH; Warnecke MR
    Trends Parasitol; 2007 Aug; 23(8):352-6. PubMed ID: 17574922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of reaction conditions on the removal of pathogenic protozoan from secondary effluent in flocculation process].
    Zhang T; Hu HY; Wu QY; Zong ZS
    Huan Jing Ke Xue; 2007 Aug; 28(8):1752-8. PubMed ID: 17926405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Removal of Cryptosporidium and Giardia in drinking water treatment in a Tuscan area].
    Sacco C; Bianchi M; Lorini C; Burrini D; Berchielli S; Lanciotti E
    Ann Ig; 2006; 18(2):117-26. PubMed ID: 16649509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.