BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18068670)

  • 1. Biotransformation of (+)-catechin into taxifolin by a two-step oxidation: primary stage of (+)-catechin metabolism by a novel (+)-catechin-degrading bacteria, Burkholderia sp. KTC-1, isolated from tropical peat.
    Matsuda M; Otsuka Y; Jin S; Wasaki J; Watanabe J; Watanabe T; Osaki M
    Biochem Biophys Res Commun; 2008 Feb; 366(2):414-9. PubMed ID: 18068670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic activity of cell-free extracts from Burkholderia oxyphila OX-01 bio-converts (+)-catechin and (-)-epicatechin to (+)-taxifolin.
    Otsuka Y; Matsuda M; Sonoki T; Sato-Izawa K; Goodell B; Jelison J; Navarro RR; Murata H; Nakamura M
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2473-2479. PubMed ID: 27685324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a new 2,4-dinitrophenol-degrading bacterium Burkholderia sp. strain KU-46 and its degradation pathway.
    Iwaki H; Abe K; Hasegawa Y
    FEMS Microbiol Lett; 2007 Sep; 274(1):112-7. PubMed ID: 17590225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of dieldrin- and endrin-degrading bacteria using 1,2-epoxycyclohexane as a structural analog of both compounds.
    Matsumoto E; Kawanaka Y; Yun SJ; Oyaizu H
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):1095-103. PubMed ID: 18769917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Bacteria of the genus Burkholderia as a typical component of the microbial community of sphagnum peat bogs].
    Belova SE; Pankratov TA; Dedysh SN
    Mikrobiologiia; 2006; 75(1):110-7. PubMed ID: 16579452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary cooperation between two syntrophic bacteria in pesticide degradation.
    Katsuyama C; Nakaoka S; Takeuchi Y; Tago K; Hayatsu M; Kato K
    J Theor Biol; 2009 Feb; 256(4):644-54. PubMed ID: 19038271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria.
    King GM
    FEMS Microbiol Ecol; 2006 Apr; 56(1):1-7. PubMed ID: 16542399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbazole biodegradation in gas oil/water biphasic media by a new isolated bacterium Burkholderia sp. strain IMP5GC.
    Castorena G; Mugica V; Le Borgne S; Acuña ME; Bustos-Jaimes I; Aburto J
    J Appl Microbiol; 2006 Apr; 100(4):739-45. PubMed ID: 16553728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100.
    Kim JR; Ahn YJ
    Biodegradation; 2009 Jul; 20(4):487-97. PubMed ID: 19082866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome sequence of the nitroaromatic compound-degrading Bacterium Burkholderia sp. strain SJ98.
    Kumar S; Vikram S; Raghava GP
    J Bacteriol; 2012 Jun; 194(12):3286. PubMed ID: 22628512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified sublimation to isolate phenanthrene-degrading bacteria of the genera Sphingomonas and Burkholderia from Xiamen oil port.
    Huang X; Tian Y; Luo YR; Liu HJ; Zheng W; Zheng TL
    Mar Pollut Bull; 2008; 57(6-12):538-43. PubMed ID: 18502449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98.
    Pandey J; Heipieper HJ; Chauhan A; Arora PK; Prakash D; Takeo M; Jain RK
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):597-607. PubMed ID: 21626025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of
    Yoshida H; Takeda H; Wakana D; Hosoe T
    Biosci Biotechnol Biochem; 2020 Jun; 84(6):1299-1302. PubMed ID: 31985355
    [No Abstract]   [Full Text] [Related]  

  • 14. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.
    Hernández M; Villalobos P; Morgante V; González M; Reiff C; Moore E; Seeger M
    FEMS Microbiol Lett; 2008 Sep; 286(2):184-90. PubMed ID: 18647357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between (+)-catechin and quercetin during their oxidation by nitrite under the conditions simulating the stomach.
    Veljovic-Jovanovic S; Morina F; Yamauchi R; Hirota S; Takahama U
    J Agric Food Chem; 2014 May; 62(21):4951-9. PubMed ID: 24785370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process.
    Andres-Lacueva C; Monagas M; Khan N; Izquierdo-Pulido M; Urpi-Sarda M; Permanyer J; Lamuela-Raventós RM
    J Agric Food Chem; 2008 May; 56(9):3111-7. PubMed ID: 18412367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microbial metabolism of (+)-catechin to two novel diarylpropan-2-ol metabolites in vitro.
    Groenewoud G; Hundt HK
    Xenobiotica; 1984 Sep; 14(9):711-7. PubMed ID: 6516444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete genome sequence of the fenitrothion-degrading Burkholderia sp. strain YI23.
    Lim JS; Choi BS; Choi AY; Kim KD; Kim DI; Choi IY; Ka JO
    J Bacteriol; 2012 Feb; 194(4):896. PubMed ID: 22275096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds.
    Kalinova J; Vrchotova N
    J Agric Food Chem; 2009 Apr; 57(7):2719-25. PubMed ID: 19253962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of Burkholderia strains isolated from rice cultivars (Oryza sativa L.) for species identification and phylogenetic grouping.
    Madhaiyan M; Poonguzhali S; Kwon SW; Song MH; Sa T
    J Microbiol Biotechnol; 2008 Jun; 18(6):1005-10. PubMed ID: 18600039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.