BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

858 related articles for article (PubMed ID: 18068879)

  • 41. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.
    Díaz O; Tapia Y; Pastene R; Montes S; Núñez N; Vélez D; Montoro R
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):666-9. PubMed ID: 21484519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: Results from a case study in the Inner Mongolia, China.
    Neidhardt H; Norra S; Tang X; Guo H; Stüben D
    Environ Pollut; 2012 Apr; 163():8-13. PubMed ID: 22325425
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water.
    Smith E; Juhasz AL; Weber J; Naidu R
    Sci Total Environ; 2008 Mar; 392(2-3):277-83. PubMed ID: 18164371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain.
    Azizur Rahman M; Hasegawa H; Mahfuzur Rahman M; Mazid Miah MA; Tasmin A
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):317-24. PubMed ID: 17346792
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential health risk of total arsenic from consumption of farm rice (Oryza sativa) from the southern Caspian Sea littoral and from imported rice in Iran.
    Rezaitabar S; Esmaili-Sari A; Bahramifar N
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):614-6. PubMed ID: 22323045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ELISA and HPLC methods for atrazine and simazine determination in trophic chains samples.
    Baranowska I; Barchanska H; Abuknesha RA; Price RG; Stalmach A
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):341-8. PubMed ID: 17919722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.
    Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A; Regina IS
    Sci Total Environ; 2012 Nov; 439():35-43. PubMed ID: 23063636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soil-to-plant halogens transfer studies 1. Root uptake of radioiodine by plants.
    Kashparov V; Colle C; Zvarich S; Yoschenko V; Levchuk S; Lundin S
    J Environ Radioact; 2005; 79(2):187-204. PubMed ID: 15603907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The occurrence of arsenc in the environment and food].
    Loźna K; Biernat J
    Rocz Panstw Zakl Hig; 2008; 59(1):19-31. PubMed ID: 18666619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period.
    Dittmar J; Voegelin A; Roberts LC; Hug SJ; Saha GC; Ali MA; Badruzzaman AB; Kretzschmar R
    Environ Sci Technol; 2010 Apr; 44(8):2925-31. PubMed ID: 20235529
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lead levels of edibles grown in contaminated residential soils: a field survey.
    Finster ME; Gray KA; Binns HJ
    Sci Total Environ; 2004 Mar; 320(2-3):245-57. PubMed ID: 15016510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rice paddies map arsenic problem.
    Lubick N
    Environ Sci Technol; 2007 Sep; 41(17):5928. PubMed ID: 17937259
    [No Abstract]   [Full Text] [Related]  

  • 53. Arsenic accumulation and metabolism in rice (Oryza sativa L.).
    Abedin MJ; Cresser MS; Meharg AA; Feldmann J; Cotter-Howells J
    Environ Sci Technol; 2002 Mar; 36(5):962-8. PubMed ID: 11918027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh.
    Azizur Rahman M; Hasegawa H; Mahfuzur Rahman M; Nazrul Islam M; Majid Miah MA; Tasmen A
    Chemosphere; 2007 Apr; 67(6):1072-9. PubMed ID: 17239924
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China.
    Wang G; Su MY; Chen YH; Lin FF; Luo D; Gao SF
    Environ Pollut; 2006 Nov; 144(1):127-35. PubMed ID: 16516364
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Risk from winter vegetables and pulses produced in arsenic endemic areas of Nadia District: field study comparison with market basket survey.
    Biswas A; Biswas S; Santra SC
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):909-14. PubMed ID: 22392004
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Presence of arsenic in agricultural products from arsenic-endemic areas and strategies to reduce arsenic intake in rural villages.
    Carbonell-Barrachina AA; Signes-Pastor AJ; Vázquez-Araújo L; Burló F; Sengupta B
    Mol Nutr Food Res; 2009 May; 53(5):531-41. PubMed ID: 19382147
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.).
    Rahman MA; Rahman MM; Kadohashi K; Maki T; Hasegawa H
    Chemosphere; 2011 Jul; 84(4):439-45. PubMed ID: 21507453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine.
    Nobuntou W; Parkpian P; Oanh NT; Noomhorm A; Delaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Nov; 45(13):1702-14. PubMed ID: 20853202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China.
    Khan S; Cao Q; Zheng YM; Huang YZ; Zhu YG
    Environ Pollut; 2008 Apr; 152(3):686-92. PubMed ID: 17720286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.