BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 18068927)

  • 1. Rapid motion estimation and correction using self-encoded FID navigators in 3D radial MRI.
    Wallace TE; Piccini D; Kober T; Warfield SK; Afacan O
    Magn Reson Med; 2024 Mar; 91(3):1057-1066. PubMed ID: 37929608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion-compensated image reconstruction for improved kidney function assessment using dynamic contrast-enhanced MRI.
    Ariyurek C; Koçanaoğulları A; Afacan O; Kurugol S
    NMR Biomed; 2024 Jun; 37(6):e5116. PubMed ID: 38359842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective motion correction in kidney MRI using FID navigators.
    Ariyurek C; Wallace TE; Kober T; Kurugol S; Afacan O
    Magn Reson Med; 2023 Jan; 89(1):276-285. PubMed ID: 36063497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.
    Li X; Yang J; Gao J; Luo X; Zhou Z; Hu Y; Wu EX; Wan M
    PLoS One; 2014; 9(4):e94592. PubMed ID: 24727862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics.
    Vakli P; Weiss B; Szalma J; Barsi P; Gyuricza I; Kemenczky P; Somogyi E; Nárai Á; Gál V; Hermann P; Vidnyánszky Z
    Med Image Anal; 2023 Aug; 88():102850. PubMed ID: 37263108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the utility of complex-valued functional magnetic resonance imaging detection of neurobiological processes through postacquisition estimation and correction of dynamic B(0) errors and motion.
    Hahn AD; Nencka AS; Rowe DB
    Hum Brain Mapp; 2012 Feb; 33(2):288-306. PubMed ID: 21305669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating rigid head motion artifacts on brain magnitude MRI data-Outcome on image quality and segmentation of the cerebral cortex.
    Olsson H; Millward JM; Starke L; Gladytz T; Klein T; Fehr J; Lai WC; Lippert C; Niendorf T; Waiczies S
    PLoS One; 2024; 19(4):e0301132. PubMed ID: 38626138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving MR image quality with a multi-task model, using convolutional losses.
    Simkó A; Ruiter S; Löfstedt T; Garpebring A; Nyholm T; Bylund M; Jonsson J
    BMC Med Imaging; 2023 Oct; 23(1):148. PubMed ID: 37784039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cardiac MRI motion artifact reduction method based on edge enhancement network.
    Jiang N; Zhang Y; Li Q; Fu X; Fang D
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38537303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved motion correction in brain MRI using 3D radial trajectory and projection moment analysis.
    Li B; She H
    Magn Reson Med; 2024 May; ():. PubMed ID: 38775235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological correction of brain surface meshes using spherical harmonics.
    Yotter RA; Dahnke R; Thompson PM; Gaser C
    Hum Brain Mapp; 2011 Jul; 32(7):1109-24. PubMed ID: 20665722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal placement of inherent zeros in polynomial-based motion profiles for minimizing residual vibration and travel time under system uncertainties.
    Ha CW; Lee D
    ISA Trans; 2024 Jun; ():. PubMed ID: 38918101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion corrected silent ZTE neuroimaging.
    Ljungberg E; Wood TC; Solana AB; Williams SCR; Barker GJ; Wiesinger F
    Magn Reson Med; 2022 Jul; 88(1):195-210. PubMed ID: 35381110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI.
    Zhang J; Winters K; Kiser K; Baboli M; Kim SG
    PLoS One; 2020; 15(6):e0234520. PubMed ID: 32520950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck.
    Chawla S; Kim S; Dougherty L; Wang S; Loevner LA; Quon H; Poptani H
    AJR Am J Roentgenol; 2013 Jan; 200(1):35-43. PubMed ID: 23255739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive retrospective correction of motion artifacts in cranial MRI with multicoil three-dimensional radial acquisitions.
    Anderson AG; Velikina J; Block W; Wieben O; Samsonov A
    Magn Reson Med; 2013 Apr; 69(4):1094-103. PubMed ID: 22760728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of disease-free survival in patients with squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging.
    Chawla S; Kim S; Loevner LA; Hwang WT; Weinstein G; Chalian A; Quon H; Poptani H
    AJNR Am J Neuroradiol; 2011 Apr; 32(4):778-84. PubMed ID: 21349969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging.
    Kim S; Loevner LA; Quon H; Kilger A; Sherman E; Weinstein G; Chalian A; Poptani H
    AJNR Am J Neuroradiol; 2010 Feb; 31(2):262-8. PubMed ID: 19797785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic correction of in-plane bulk motion artifacts in self-navigated radial MRI.
    Kim S; Dougherty L; Rosen MA; Song HK; Poptani H
    Magn Reson Imaging; 2008 Apr; 26(3):367-78. PubMed ID: 18068927
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.