These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18069329)

  • 1. [Development and relations of Fusarium culmorum and Pseudomonas fluorescens in soil].
    Strunnikova OK; Shakhnazarova VIu; Vishnevskaia NA; Chebotar' VK; Tikhonovich IA
    Mikrobiologiia; 2007; 76(5):675-81. PubMed ID: 18069329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Root Exudates of Barley Colonized by
    Vishnevskaya N; Shakhnazarova V; Shaposhnikov A; Strunnikova O
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32188109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides.
    Czaban J; Ksiezniak A; Perzyński A
    Pol J Microbiol; 2004; 53(3):175-82. PubMed ID: 15702917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea.
    Saikia R; Singh T; Kumar R; Srivastava J; Srivastava AK; Singh K; Arora DK
    Microbiol Res; 2003; 158(3):203-13. PubMed ID: 14521230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum.
    Jaroszuk-Sciseł J; Kurek E; Rodzik B; Winiarczyk K
    Mycol Res; 2009 Oct; 113(Pt 10):1053-61. PubMed ID: 19591930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid body content and persistence of chlamydospores of Fusarium solani in soil.
    van Eck WH
    Can J Microbiol; 1978 Jan; 24(1):65-9. PubMed ID: 754878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological control of fusarium seedling blight disease of wheat and barley.
    Khan MR; Fischer S; Egan D; Doohan FM
    Phytopathology; 2006 Apr; 96(4):386-94. PubMed ID: 18943420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biological properties of the wild rhizosphere strain Pseudomonas fluorescens 2137 and its derivatives marked with the gusA gene].
    Viazovaia AA; Limeshchenko EV; Buren' VM
    Mikrobiologiia; 2006; 75(5):689-95. PubMed ID: 17091592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indigenous microflora responses to introduction of cyanogenic strains of Pseudomonas fluorescens into soil.
    Piotrowska-Seget Z; Kozdrój J
    Acta Microbiol Pol; 1999; 48(1):73-8. PubMed ID: 10467697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings.
    Wang C; Wang D; Zhou Q
    Can J Microbiol; 2004 Jul; 50(7):475-81. PubMed ID: 15381971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suitability of membrane-filter techniques to study the ultrastructure of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1628-33. PubMed ID: 974910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An N-acetyl-beta-D-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum.
    Mamarabadi M; Jensen DF; Lübeck M
    Mycol Res; 2009 Jan; 113(Pt 1):33-43. PubMed ID: 18675351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens.
    Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN
    Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas.
    Cordero P; Príncipe A; Jofré E; Mori G; Fischer S
    Arch Microbiol; 2014 Nov; 196(11):803-9. PubMed ID: 25085617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
    Koch B; Worm J; Jensen LE; Højberg O; Nybroe O
    Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems.
    Compeau G; Al-Achi BJ; Platsouka E; Levy SB
    Appl Environ Microbiol; 1988 Oct; 54(10):2432-8. PubMed ID: 3144244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil.
    Luján AM; Gómez P; Buckling A
    Biol Lett; 2015 Feb; 11(2):20140934. PubMed ID: 25694506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil.
    van Overbeek LS; Eberl L; Givskov M; Molin S; van Elsas JD
    Appl Environ Microbiol; 1995 Dec; 61(12):4202-8. PubMed ID: 8534087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of proteinaceous proteinase inhibitors from potato tubers on the growth and development of phytopathogenic microorganisms].
    Revina TA; Gerasimova NG; Kladnitskaia GV; Chalenko GI; Valueva TA
    Prikl Biokhim Mikrobiol; 2008; 44(1):101-5. PubMed ID: 18491605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions.
    Deveau A; Gross H; Palin B; Mehnaz S; Schnepf M; Leblond P; Dorrestein PC; Aigle B
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27199346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.