These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 18069861)
1. Drop mixing in a microchannel for lab-on-a-chip platforms. Rhee M; Burns MA Langmuir; 2008 Jan; 24(2):590-601. PubMed ID: 18069861 [TBL] [Abstract][Full Text] [Related]
2. Electrokinetically-driven flow mixing in microchannels with wavy surface. Chen CK; Cho CC J Colloid Interface Sci; 2007 Aug; 312(2):470-80. PubMed ID: 17442332 [TBL] [Abstract][Full Text] [Related]
3. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Lin YC; Chung YC; Wu CY Biomed Microdevices; 2007 Apr; 9(2):215-21. PubMed ID: 17165126 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids. Verma MK; Ganneboyina SR; R VR; Ghatak A Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716 [TBL] [Abstract][Full Text] [Related]
5. Design and simulation of the micromixer with chaotic advection in twisted microchannels. Jen CP; Wu CY; Lin YC; Wu CY Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786 [TBL] [Abstract][Full Text] [Related]
6. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Hattori K; Sugiura S; Kanamori T Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461 [TBL] [Abstract][Full Text] [Related]
7. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Park SG; Lee SK; Moon JH; Yang SM Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731 [TBL] [Abstract][Full Text] [Related]
9. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics. Yao S; Bakajin O Anal Chem; 2007 Aug; 79(15):5753-9. PubMed ID: 17583912 [TBL] [Abstract][Full Text] [Related]
12. An ultrashort mixing length micromixer: the shear superposition micromixer. Bottausci F; Cardonne C; Meinhart C; Mezić I Lab Chip; 2007 Mar; 7(3):396-8. PubMed ID: 17330174 [TBL] [Abstract][Full Text] [Related]
13. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Ng WY; Goh S; Lam YC; Yang C; Rodríguez I Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic pool structure for cell docking and rapid mixing. Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811 [TBL] [Abstract][Full Text] [Related]
15. Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel. Fleming KK; Longmire EK; Hubel A J Biomech Eng; 2007 Oct; 129(5):703-11. PubMed ID: 17887896 [TBL] [Abstract][Full Text] [Related]
16. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961 [TBL] [Abstract][Full Text] [Related]
17. The deformation of flexible PDMS microchannels under a pressure driven flow. Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304 [TBL] [Abstract][Full Text] [Related]
18. Rapid circular microfluidic mixer utilizing unbalanced driving force. Lin CH; Tsai CH; Pan CW; Fu LM Biomed Microdevices; 2007 Feb; 9(1):43-50. PubMed ID: 17106640 [TBL] [Abstract][Full Text] [Related]