These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18069867)

  • 1. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics.
    Johnson RR; Johnson AT; Klein ML
    Nano Lett; 2008 Jan; 8(1):69-75. PubMed ID: 18069867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics.
    Johnson RR; Kohlmeyer A; Johnson AT; Klein ML
    Nano Lett; 2009 Feb; 9(2):537-41. PubMed ID: 19161335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.
    Ghosh S; Patel N; Chakrabarti R
    J Phys Chem B; 2016 Jan; 120(3):455-66. PubMed ID: 26716359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of DNA on a gapped carbon nanotube.
    Bobadilla AD; Seminario JM
    J Mol Model; 2012 Jul; 18(7):3291-300. PubMed ID: 22252833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.
    Hwu JR; Kapoor M; Li RY; Lin YC; Horng JC; Tsay SC
    Chem Asian J; 2014 Dec; 9(12):3408-12. PubMed ID: 25294777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-decorated carbon nanotubes for chemical sensing.
    Staii C; Johnson AT; Chen M; Gelperin A
    Nano Lett; 2005 Sep; 5(9):1774-8. PubMed ID: 16159222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-assisted dispersion and separation of carbon nanotubes.
    Zheng M; Jagota A; Semke ED; Diner BA; McLean RS; Lustig SR; Richardson RE; Tassi NG
    Nat Mater; 2003 May; 2(5):338-42. PubMed ID: 12692536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube.
    Roxbury D; Jagota A; Mittal J
    J Am Chem Soc; 2011 Aug; 133(34):13545-50. PubMed ID: 21797248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes.
    Roxbury D; Jagota A; Mittal J
    J Phys Chem B; 2013 Jan; 117(1):132-40. PubMed ID: 23199189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA.
    Gigliotti B; Sakizzie B; Bethune DS; Shelby RM; Cha JN
    Nano Lett; 2006 Feb; 6(2):159-64. PubMed ID: 16464027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly.
    Zheng M; Jagota A; Strano MS; Santos AP; Barone P; Chou SG; Diner BA; Dresselhaus MS; McLean RS; Onoa GB; Samsonidze GG; Semke ED; Usrey M; Walls DJ
    Science; 2003 Nov; 302(5650):1545-8. PubMed ID: 14645843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralarge Modulation of Fluorescence by Neuromodulators in Carbon Nanotubes Functionalized with Self-Assembled Oligonucleotide Rings.
    Beyene AG; Alizadehmojarad AA; Dorlhiac G; Goh N; Streets AM; Král P; Vuković L; Landry MP
    Nano Lett; 2018 Nov; 18(11):6995-7003. PubMed ID: 30350638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube.
    Zhang S; Wang X; Li T; Liu L; Wu HC; Luo M; Li J
    Langmuir; 2015 Sep; 31(36):10094-9. PubMed ID: 26259044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ssDNA-amphiphile architecture used to control dimensions of DNA nanotubes.
    Kuang H; Gartner Iii TE; Dorneles de Mello M; Guo J; Zuo X; Tsapatsis M; Jayaraman A; Kokkoli E
    Nanoscale; 2019 Nov; 11(42):19850-19861. PubMed ID: 31559999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomolecular recognition ability of RecA proteins for DNA on single-walled carbon nanotubes.
    Oura S; Ito M; Nii D; Homma Y; Umemura K
    Colloids Surf B Biointerfaces; 2015 Feb; 126():496-501. PubMed ID: 25612818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection.
    Wang Y; Wang P; Wang Y; He X; Wang K
    Talanta; 2015 Aug; 141():122-7. PubMed ID: 25966391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.