BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 18069966)

  • 1. Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer.
    Urbonavicius J; Auxilien S; Walbott H; Trachana K; Golinelli-Pimpaneau B; Brochier-Armanet C; Grosjean H
    Mol Microbiol; 2008 Jan; 67(2):323-35. PubMed ID: 18069966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases.
    Auxilien S; Rasmussen A; Rose S; Brochier-Armanet C; Husson C; Fourmy D; Grosjean H; Douthwaite S
    RNA; 2011 Jan; 17(1):45-53. PubMed ID: 21051506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity.
    Walbott H; Leulliot N; Grosjean H; Golinelli-Pimpaneau B
    Nucleic Acids Res; 2008 Sep; 36(15):4929-40. PubMed ID: 18653523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA.
    Urbonavicius J; Armengaud J; Grosjean H
    J Mol Biol; 2006 Mar; 357(2):387-99. PubMed ID: 16434050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications.
    Urbonavicius J; Skouloubris S; Myllykallio H; Grosjean H
    Nucleic Acids Res; 2005; 33(13):3955-64. PubMed ID: 16027442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.
    Andersson JO; Sarchfield SW; Roger AJ
    Mol Biol Evol; 2005 Jan; 22(1):85-90. PubMed ID: 15356278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro detection of the enzymatic activity of folate-dependent tRNA (Uracil-54,-C5)-methyltransferase: evolutionary implications.
    Urbonavicius J; Brochier-Armanet C; Skouloubris S; Myllykallio H; Grosjean H
    Methods Enzymol; 2007; 425():103-19. PubMed ID: 17673080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP.
    Renalier MH; Joseph N; Gaspin C; Thebault P; Mougin A
    RNA; 2005 Jul; 11(7):1051-63. PubMed ID: 15987815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residues of the Escherichia coli tRNA(m5U54)methyltransferase (TrmA) critical for stability, covalent binding of tRNA and enzymatic activity.
    Urbonavicius J; Jäger G; Björk GR
    Nucleic Acids Res; 2007; 35(10):3297-305. PubMed ID: 17459887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal gene transfer and archaeal origin of deoxyhypusine synthase homologous genes in bacteria.
    Brochier C; López-García P; Moreira D
    Gene; 2004 Apr; 330():169-76. PubMed ID: 15087136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A primordial tRNA modification required for the evolution of life?
    Björk GR; Jacobsson K; Nilsson K; Johansson MJ; Byström AS; Persson OP
    EMBO J; 2001 Jan; 20(1-2):231-9. PubMed ID: 11226173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein.
    Brulé H; Elliott M; Redlak M; Zehner ZE; Holmes WM
    Biochemistry; 2004 Jul; 43(28):9243-55. PubMed ID: 15248782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different mechanisms for tRNA ribose methylation in Archaea: a short survey.
    Clouet-d'Orval B; Gaspin C; Mougin A
    Biochimie; 2005; 87(9-10):889-95. PubMed ID: 16164996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus.
    Takeda H; Toyooka T; Ikeuchi Y; Yokobori S; Okadome K; Takano F; Oshima T; Suzuki T; Endo Y; Hori H
    Genes Cells; 2006 Dec; 11(12):1353-65. PubMed ID: 17121543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide experimental determination of barriers to horizontal gene transfer.
    Sorek R; Zhu Y; Creevey CJ; Francino MP; Bork P; Rubin EM
    Science; 2007 Nov; 318(5855):1449-52. PubMed ID: 17947550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
    Coombs JM; Barkay T
    Appl Environ Microbiol; 2005 Nov; 71(11):7083-91. PubMed ID: 16269744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences.
    Stepkowski T; Brzeziński K; Legocki AB; Jaskólski M; Béna G
    Mol Phylogenet Evol; 2005 Jan; 34(1):15-28. PubMed ID: 15579379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomes in flux: the evolution of archaeal and proteobacterial gene content.
    Snel B; Bork P; Huynen MA
    Genome Res; 2002 Jan; 12(1):17-25. PubMed ID: 11779827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus.
    Portillo MC; Gonzalez JM
    J Appl Genet; 2009; 50(4):421-30. PubMed ID: 19875895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization.
    Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8933-8. PubMed ID: 15937113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.