These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18070366)

  • 1. Predicting gene ontology functions from protein's regional surface structures.
    Liu ZP; Wu LY; Wang Y; Chen L; Zhang XS
    BMC Bioinformatics; 2007 Dec; 8():475. PubMed ID: 18070366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks.
    Daraselia N; Yuryev A; Egorov S; Mazo I; Ispolatov I
    BMC Bioinformatics; 2007 Jul; 8():243. PubMed ID: 17620146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein cavity clustering based on community structure of pocket similarity network.
    Liu ZP; Wu LY; Wang Y; Zhang XS;
    Int J Bioinform Res Appl; 2008; 4(4):445-60. PubMed ID: 19008186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure alignment-based classification of RNA-binding pockets reveals regional RNA recognition motifs on protein surfaces.
    Liu ZP; Liu S; Chen R; Huang X; Wu LY
    BMC Bioinformatics; 2017 Jan; 18(1):27. PubMed ID: 28077065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 4. Predicting and characterizing protein functions through matching geometric and evolutionary patterns of binding surfaces.
    Liang J; Tseng YY; Dundas J; Binkowski TA; Joachimiak A; Ouyang Z; Adamian L
    Adv Protein Chem Struct Biol; 2008; 75():107-41. PubMed ID: 20731991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. fPOP: footprinting functional pockets of proteins by comparative spatial patterns.
    Tseng YY; Chen ZJ; Li WH
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D288-95. PubMed ID: 19880384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing protein similarity with Gene Ontology and its use in subnuclear localization prediction.
    Lei Z; Dai Y
    BMC Bioinformatics; 2006 Nov; 7():491. PubMed ID: 17090318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of PIPA: an integrated and automated pipeline for genome-wide protein function annotation.
    Yu C; Zavaljevski N; Desai V; Johnson S; Stevens FJ; Reifman J
    BMC Bioinformatics; 2008 Jan; 9():52. PubMed ID: 18221520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure.
    Bhagavat R; Sankar S; Srinivasan N; Chandra N
    Structure; 2018 Mar; 26(3):499-512.e2. PubMed ID: 29514079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization.
    Huang WL; Tung CW; Ho SW; Hwang SF; Ho SY
    BMC Bioinformatics; 2008 Feb; 9():80. PubMed ID: 18241343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APoc: large-scale identification of similar protein pockets.
    Gao M; Skolnick J
    Bioinformatics; 2013 Mar; 29(5):597-604. PubMed ID: 23335017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis on multi-domain cooperation for predicting protein-protein interactions.
    Wang RS; Wang Y; Wu LY; Zhang XS; Chen L
    BMC Bioinformatics; 2007 Oct; 8():391. PubMed ID: 17937822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the protein-protein interactions using primary structures with predicted protein surface.
    Chang DT; Syu YT; Lin PC
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S3. PubMed ID: 20122202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase.
    Kuhn D; Weskamp N; Schmitt S; Hüllermeier E; Klebe G
    J Mol Biol; 2006 Jun; 359(4):1023-44. PubMed ID: 16697007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene ontology improves template selection in comparative protein docking.
    Hadarovich A; Anishchenko I; Tuzikov AV; Kundrotas PJ; Vakser IA
    Proteins; 2019 Mar; 87(3):245-253. PubMed ID: 30520123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CASTpFold: Computed Atlas of Surface Topography of the universe of protein Folds.
    Ye B; Tian W; Wang B; Liang J
    Nucleic Acids Res; 2024 Jul; 52(W1):W194-W199. PubMed ID: 38783102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.