These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18070665)

  • 1. Evidence that amino-acid residues are responsible for substrate synergism of locust arginine kinase.
    Wu QY; Li F; Wang XY
    Insect Biochem Mol Biol; 2008 Jan; 38(1):59-65. PubMed ID: 18070665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase.
    Fujimoto N; Tanaka K; Suzuki T
    FEBS Lett; 2005 Mar; 579(7):1688-92. PubMed ID: 15757662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis.
    Wu QY; Li F; Zhu WJ; Wang XY
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Dec; 148(4):355-62. PubMed ID: 17689280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Val65 plays an important role in the substrate synergism, structural stability and activity of arginine kinase.
    Wu QY; Li F; Wang XY
    Int J Biol Macromol; 2009 Nov; 45(4):393-8. PubMed ID: 19628004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between residues 62 and 193 play a key role in activity and structural stability of arginine kinase.
    Liu N; Wang JS; Wang WD; Pan JC
    Int J Biol Macromol; 2011 Oct; 49(3):402-8. PubMed ID: 21645540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains.
    Uda K; Yamamoto K; Iwasaki N; Iwai M; Fujikura K; Ellington WR; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):176-82. PubMed ID: 18639645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxocara canis: molecular cloning, characterization, expression and comparison of the kinetics of cDNA-derived arginine kinase.
    Wickramasinghe S; Uda K; Nagataki M; Yatawara L; Rajapakse RP; Watanabe Y; Suzuki T; Agatsuma T
    Exp Parasitol; 2007 Oct; 117(2):124-32. PubMed ID: 17574244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus. II. Evidence from site-directed mutagenesis studies.
    Tada H; Suzuki T
    Int J Biol Macromol; 2010 Aug; 47(2):250-4. PubMed ID: 20434482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure.
    Zhang JW; Zhao TJ; Wang SL; Guo Q; Liu TT; Zhao F; Wang XC
    Int J Biol Macromol; 2006 May; 38(3-5):203-10. PubMed ID: 16574215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that the amino acid residue P272 of arginine kinase is involved in its activity, structure and stability.
    Wu QY; Li F; Wang XY
    Int J Biol Macromol; 2008 Nov; 43(4):367-72. PubMed ID: 18703083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tryptophane residues of dimeric arginine kinase: roles of Trp-208 and Trp-218 in active site and conformation stability.
    Guo Q; Zhao F; Guo SY; Wang X
    Biochimie; 2004 Jun; 86(6):379-86. PubMed ID: 15358054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K; Iseno S; Uda K; Suzuki T
    Gene; 2009 May; 437(1-2):80-7. PubMed ID: 19268694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The D14 and R138 ion pair is involved in dimeric arginine kinase activity, structural stability and folding.
    Geng HL; Bian MR; Liu Y; Cao J; Chen C; Wang ZY; Li ZY; Zeng LY; Wang XY; Wu QY; Xu KL
    Int J Biol Macromol; 2014 May; 66():302-10. PubMed ID: 24582938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and catalytic role of two conserved tyrosines in Delta-class glutathione S-transferase from Locusta migratoria.
    Zhang X; Li T; Zhang J; Li D; Guo Y; Qin G; Zhu KY; Ma E; Zhang J
    Arch Insect Biochem Physiol; 2012 Jul; 80(2):77-91. PubMed ID: 22581614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta.
    Wang H; Zhang L; Zhang L; Lin Q; Liu N
    Gene; 2009 Feb; 430(1-2):38-43. PubMed ID: 19028554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.