BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18071243)

  • 1. Plant-type N-glycans containing fucose and xylose in Bryophyta (mosses) and Tracheophyta (ferns).
    Mega T
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):2893-904. PubMed ID: 18071243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation.
    Frey AD; Karg SR; Kallio PT
    Plant Biotechnol J; 2009 Jan; 7(1):33-48. PubMed ID: 18778316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a tobacco BY2 cell line devoid of plant-specific xylose and fucose as a platform for the production of biotherapeutic proteins.
    Hanania U; Ariel T; Tekoah Y; Fux L; Sheva M; Gubbay Y; Weiss M; Oz D; Azulay Y; Turbovski A; Forster Y; Shaaltiel Y
    Plant Biotechnol J; 2017 Sep; 15(9):1120-1129. PubMed ID: 28160363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose.
    Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L
    Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose.
    Strasser R; Altmann F; Mach L; Glössl J; Steinkellner H
    FEBS Lett; 2004 Mar; 561(1-3):132-6. PubMed ID: 15013764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of α-1,6-fucosyltransferase (FUT8) in rice grain and immunogenicity evaluation of plant-specific glycans.
    Wang X; Jiang D; Shi J; Yang D
    J Biotechnol; 2017 Jan; 242():111-121. PubMed ID: 28013072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of recombinant human granulocyte macrophage-colony stimulating factor in rice cell suspension culture with a human-like N-glycan structure.
    Shin YJ; Chong YJ; Yang MS; Kwon TH
    Plant Biotechnol J; 2011 Dec; 9(9):1109-19. PubMed ID: 21801300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.
    Matsuo K; Kagaya U; Itchoda N; Tabayashi N; Matsumura T
    J Biosci Bioeng; 2014 Oct; 118(4):448-54. PubMed ID: 24794851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.
    Okajima T; Matsuura A; Matsuda T
    J Biochem; 2008 Jul; 144(1):1-6. PubMed ID: 18272537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis β1,2-xylosyltransferase: substrate specificity and participation in the plant-specific N-glycosylation pathway.
    Kajiura H; Okamoto T; Misaki R; Matsuura Y; Fujiyama K
    J Biosci Bioeng; 2012 Jan; 113(1):48-54. PubMed ID: 22024534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity.
    Holgersson J; Löfling J
    Glycobiology; 2006 Jul; 16(7):584-93. PubMed ID: 16484342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the β (1, 2)-xylosyltransferase and the α (1, 3)-fucosyltransferase gene in rice (Oryza sativa) by multiplex CRISPR/Cas9 strategy.
    Jung JW; Shin JH; Lee WK; Begum H; Min CH; Jang MH; Oh HB; Yang MS; Kim SR
    Plant Cell Rep; 2021 Jun; 40(6):1025-1035. PubMed ID: 33547931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of fucose residues in plant N-glycans by repression of the GDP-mannose 4,6-dehydratase gene using virus-induced gene silencing and RNA interference.
    Matsuo K; Matsumura T
    Plant Biotechnol J; 2011 Feb; 9(2):264-81. PubMed ID: 20731789
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Stenitzer D; Mócsai R; Zechmeister H; Reski R; Decker EL; Altmann F
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schistosome N-glycans containing core alpha 3-fucose and core beta 2-xylose epitopes are strong inducers of Th2 responses in mice.
    Faveeuw C; Mallevaey T; Paschinger K; Wilson IB; Fontaine J; Mollicone R; Oriol R; Altmann F; Lerouge P; Capron M; Trottein F
    Eur J Immunol; 2003 May; 33(5):1271-81. PubMed ID: 12731052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Between a rock and a dry place: the water-stressed moss.
    Charron AJ; Quatrano RS
    Mol Plant; 2009 May; 2(3):478-86. PubMed ID: 19825631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting substrate glycans of fucosyltransferases with fluorophore-conjugated fucose and methods for glycan electrophoresis.
    Wu ZL; Whittaker M; Ertelt JM; Person AD; Kalabokis V
    Glycobiology; 2020 Dec; 30(12):970-980. PubMed ID: 32248235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trastuzumab and Pertuzumab Plant Biosimilars: Modification of Asn297-linked Glycan of the mAbs Produced in a Plant with Fucosyltransferase and Xylosyltransferase Gene Knockouts.
    Komarova TV; Sheshukova EV; Kosobokova EN; Serebryakova MV; Kosorukov VS; Tashlitsky VN; Dorokhov YL
    Biochemistry (Mosc); 2017 Apr; 82(4):510-520. PubMed ID: 28371609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural radionuclides in lichens, mosses and ferns in a thermal power plant and in an adjacent coal mine area in southern Brazil.
    Galhardi JA; García-Tenorio R; Díaz Francés I; Bonotto DM; Marcelli MP
    J Environ Radioact; 2017 Feb; 167():43-53. PubMed ID: 27876159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyco-engineering of moss lacking plant-specific sugar residues.
    Huether CM; Lienhart O; Baur A; Stemmer C; Gorr G; Reski R; Decker EL
    Plant Biol (Stuttg); 2005 May; 7(3):292-9. PubMed ID: 15912449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.