These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18071368)
1. Network search method in the design of extreme ultraviolet lithographic objectives. Marinescu O; Bociort F Appl Opt; 2007 Dec; 46(35):8385-93. PubMed ID: 18071368 [TBL] [Abstract][Full Text] [Related]
2. Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method. Liu Y; Li Y; Cao Z Appl Opt; 2016 Jun; 55(18):4917-23. PubMed ID: 27409118 [TBL] [Abstract][Full Text] [Related]
3. Grouping design of eight-mirror projection objective for high-numerical aperture EUV lithography. Liu F; Li Y Appl Opt; 2013 Oct; 52(29):7137-44. PubMed ID: 24217731 [TBL] [Abstract][Full Text] [Related]
4. Lithographic characterization of the spherical error in an extreme-ultraviolet optic by use of a programmable pupil-fill illuminator. Naulleau PP; Cain JP; Goldberg KA Appl Opt; 2006 Mar; 45(9):1957-63. PubMed ID: 16579565 [TBL] [Abstract][Full Text] [Related]
5. New laser plasma source for extreme-ultraviolet lithography. Jin F; Richardson M Appl Opt; 1995 Sep; 34(25):5750-60. PubMed ID: 21060408 [TBL] [Abstract][Full Text] [Related]
6. Design method for off-axis aspheric reflective optical system with extremely low aberration and large field of view. Wu Y; Wang L; Yu J; Yu B; Jin C Appl Opt; 2020 Nov; 59(32):10185-10193. PubMed ID: 33175796 [TBL] [Abstract][Full Text] [Related]
7. Networks of local minima in optical system optimization. Bociort F; van Driel E; Serebriakov A Opt Lett; 2004 Jan; 29(2):189-91. PubMed ID: 14744006 [TBL] [Abstract][Full Text] [Related]
8. Learning-based compressive sensing method for EUV lithographic source optimization. Lin J; Dong L; Fan T; Ma X; Wei Y; Ye T Opt Express; 2019 Aug; 27(16):22563-22581. PubMed ID: 31510546 [TBL] [Abstract][Full Text] [Related]
9. Initial structure design of coaxial six-ten mirror central-obscured extreme ultraviolet lithographic objective. Liu F; Li Y Appl Opt; 2014 Oct; 53(28):6444-51. PubMed ID: 25322231 [TBL] [Abstract][Full Text] [Related]
10. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography. Soufli R; Hudyma RM; Spiller E; Gullikson EM; Schmidt MA; Robinson JC; Baker SL; Walton CC; Taylor JS Appl Opt; 2007 Jun; 46(18):3736-46. PubMed ID: 17538670 [TBL] [Abstract][Full Text] [Related]
11. Design of an extreme ultraviolet lithography projection objective with a grouping design method through forward and reverse real ray tracing. Yan X; Li Y; Li Y; Liu L; Liu K Appl Opt; 2022 Sep; 61(25):7449-7454. PubMed ID: 36256048 [TBL] [Abstract][Full Text] [Related]
12. Correlation method for the measure of mask-induced line-edge roughness in extreme ultraviolet lithography. Naulleau PP Appl Opt; 2009 Jun; 48(18):3302-7. PubMed ID: 19543335 [TBL] [Abstract][Full Text] [Related]
13. Single spherical mirror optic for extreme ultraviolet lithography enabled by inverse lithography technology. Scranton G; Bhargava S; Ganapati V; Yablonovitch E Opt Express; 2014 Oct; 22(21):25027-42. PubMed ID: 25401536 [TBL] [Abstract][Full Text] [Related]
14. Gradient-based inverse extreme ultraviolet lithography. Ma X; Wang J; Chen X; Li Y; Arce GR Appl Opt; 2015 Aug; 54(24):7284-300. PubMed ID: 26368764 [TBL] [Abstract][Full Text] [Related]
15. Design method for an off-axis reflective anamorphic optical system with aberration balance and constraint control. Wu Y; Wang L; Zhang X; Yu J; Yu B; Jin C Appl Opt; 2021 Jun; 60(16):4557-4566. PubMed ID: 34143009 [TBL] [Abstract][Full Text] [Related]
16. Anamorphic objective design for extreme ultraviolet lithography at the 5∼1 nm technology node. Liu M; Li Y Appl Opt; 2021 Aug; 60(24):7254-7258. PubMed ID: 34613013 [TBL] [Abstract][Full Text] [Related]