These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18071392)

  • 1. Effect of dissipative forces on the theory of a single-atom microlaser.
    Nayak N
    Opt Lett; 1999 Jan; 24(1):13-5. PubMed ID: 18071392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic self-trapping induced by single-atom lasing.
    Salzburger T; Ritsch H
    Phys Rev Lett; 2004 Aug; 93(6):063002. PubMed ID: 15323625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of scalable sub-Poissonian-field lasing in a microlaser.
    Ann BM; Song Y; Kim J; Yang D; An K
    Sci Rep; 2019 Nov; 9(1):17110. PubMed ID: 31745233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traveling-wave atom cavity interaction in the single-atom microlaser.
    An K; Dasari RR; Feld MS
    Opt Lett; 1997 Oct; 22(19):1500-2. PubMed ID: 18188281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonclassical behavior of an intense cavity field revealed by quantum discord.
    Rossatto DZ; Werlang T; Duzzioni EI; Villas-Boas CJ
    Phys Rev Lett; 2011 Oct; 107(15):153601. PubMed ID: 22107291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photon blockade in an optical cavity with one trapped atom.
    Birnbaum KM; Boca A; Miller R; Boozer AD; Northup TE; Kimble HJ
    Nature; 2005 Jul; 436(7047):87-90. PubMed ID: 16001065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A photon turnstile dynamically regulated by one atom.
    Dayan B; Parkins AS; Aoki T; Ostby EP; Vahala KJ; Kimble HJ
    Science; 2008 Feb; 319(5866):1062-5. PubMed ID: 18292335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-oscillating pump in a topological dissipative atom-cavity system.
    Dreon D; Baumgärtner A; Li X; Hertlein S; Esslinger T; Donner T
    Nature; 2022 Aug; 608(7923):494-498. PubMed ID: 35978131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Apr; 6():24421. PubMed ID: 27091072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The atom-cavity microscope: single atoms bound in orbit by single photons.
    Hood CJ; Lynn TW; Doherty AC; Parkins AS; Kimble HJ
    Science; 2000 Feb; 287(5457):1447-53. PubMed ID: 10688786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping an atom with single photons.
    Pinkse PW; Fischer T; Maunz P; Rempe G
    Nature; 2000 Mar; 404(6776):365-8. PubMed ID: 10746717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong Purcell Effect on a Neutral Atom Trapped in an Open Fiber Cavity.
    Gallego J; Alt W; Macha T; Martinez-Dorantes M; Pandey D; Meschede D
    Phys Rev Lett; 2018 Oct; 121(17):173603. PubMed ID: 30411925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prethermalization of atoms due to photon-mediated long-range interactions.
    Schütz S; Morigi G
    Phys Rev Lett; 2014 Nov; 113(20):203002. PubMed ID: 25432040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in an optical cavity.
    Li DX; Shao XQ; Wu JH; Yi XX
    Opt Lett; 2017 Oct; 42(19):3904-3907. PubMed ID: 28957157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system.
    Wang Y; Liu B; Lian J; Liang J
    Opt Express; 2012 Apr; 20(9):10106-14. PubMed ID: 22535102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Ordered Limit Cycles, Chaos, and Phase Slippage with a Superfluid inside an Optical Resonator.
    Piazza F; Ritsch H
    Phys Rev Lett; 2015 Oct; 115(16):163601. PubMed ID: 26550874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracavity cold atomic ensemble with high optical depth.
    Jiang Y; Mei Y; Zou Y; Zuo Y; Du S
    Rev Sci Instrum; 2019 Jan; 90(1):013105. PubMed ID: 30709165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.