These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18071467)

  • 1. Generation and characterization of terahertz pulse trains from biased, large-aperture photoconductors.
    Siders CW; Siders JL; Taylor AJ; Park SG; Melloch MR; Weiner AM
    Opt Lett; 1999 Feb; 24(4):241-3. PubMed ID: 18071467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.
    Reid M; Fedosejevs R
    Appl Opt; 2005 Jan; 44(1):149-53. PubMed ID: 15662896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of terahertz radiation from biased photoconductors: transient velocity effects.
    Rodriguez G; Caceres SR; Taylor AJ
    Opt Lett; 1994 Dec; 19(23):1994-6. PubMed ID: 19855720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluence and polarisation dependence of GaAs based Lateral Photo-Dember terahertz emitters.
    McBryde D; Barnes ME; Berry SA; Gow P; Beere HE; Ritchie DA; Apostolopoulos V
    Opt Express; 2014 Feb; 22(3):3234-43. PubMed ID: 24663615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of the bias field in terahertz generation from photoconductors.
    Rodriguez G; Taylor AJ
    Opt Lett; 1996 Jul; 21(14):1046-8. PubMed ID: 19876247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast field dynamics in large-aperture photoconductors.
    Taylor AJ; Rodriguez G; Some D
    Opt Lett; 1997 May; 22(10):715-7. PubMed ID: 18185638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emission characteristics of ion-irradiated In(0.53)Ga(0.47)As based photoconductive antennas excited at 1.55 microm.
    Mangeney J; Chimot N; Meignien L; Zerounian N; Crozat P; Blary K; Lampin JF; Mounaix P
    Opt Express; 2007 Jul; 15(14):8943-50. PubMed ID: 19547233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.
    Lee CK; Yang CS; Lin SH; Huang SH; Wada O; Pan CL
    Opt Express; 2011 Nov; 19(24):23689-97. PubMed ID: 22109395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna.
    Upadhya PC; Fan W; Burnett A; Cunningham J; Davies AG; Linfield EH; Lloyd-Hughes J; Castro-Camus E; Johnston MB; Beere H
    Opt Lett; 2007 Aug; 32(16):2297-9. PubMed ID: 17700764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping.
    Liu Y; Park SG; Weiner AM
    Opt Lett; 1996 Nov; 21(21):1762-4. PubMed ID: 19881793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.
    Singh A; Pal S; Surdi H; Prabhu SS; Mathimalar S; Nanal V; Pillay RG; Döhler GH
    Opt Express; 2015 Mar; 23(5):6656-61. PubMed ID: 25836882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz emission from a metallic surface induced by a femtosecond optic pulse.
    Suvorov EV; Akhmedzhanov RA; Fadeev DA; Ilyakov IE; Mironov VA; Shishkin BV
    Opt Lett; 2012 Jul; 37(13):2520-2. PubMed ID: 22743441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoconductive terahertz generation in semi-insulating GaAs and InP under the extremes of bias field and pump fluence.
    Alfihed S; Jenne MF; Ciocoiu A; Foulds IG; Holzman JF
    Opt Lett; 2021 Feb; 46(3):572-575. PubMed ID: 33528411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrier dynamics of terahertz emission from low-temperature-grown gaas.
    Liu D; Qin J
    Appl Opt; 2003 Jun; 42(18):3678-83. PubMed ID: 12833974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature-grown GaAs carrier lifetime evaluation by double optical pump terahertz time-domain emission spectroscopy.
    Mag-Usara VK; Funkner S; Niehues G; Prieto EA; Balgos MH; Somintac A; Estacio E; Salvador A; Yamamoto K; Hase M; Tani M
    Opt Express; 2016 Nov; 24(23):26175-26185. PubMed ID: 27857354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.
    Tani M; Matsuura S; Sakai K; Nakashima S
    Appl Opt; 1997 Oct; 36(30):7853-9. PubMed ID: 18264312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-area electro-optic ZnTe terahertz emitters.
    Löffler T; Hahn T; Thomson M; Jacob F; Roskos H
    Opt Express; 2005 Jul; 13(14):5353-62. PubMed ID: 19498529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters.
    Yardimci NT; Salas R; Krivoy EM; Nair HP; Bank SR; Jarrahi M
    Opt Express; 2015 Dec; 23(25):32035-43. PubMed ID: 26698994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous wave terahertz radiation from antennas fabricated on C¹²-irradiated semi-insulating GaAs.
    Deshmukh P; Mendez-Aller M; Singh A; Pal S; Prabhu SS; Nanal V; Pillay RG; Döhler GH; Preu S
    Opt Lett; 2015 Oct; 40(19):4540-3. PubMed ID: 26421576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz emission from lateral photo-Dember currents.
    Klatt G; Hilser F; Qiao W; Beck M; Gebs R; Bartels A; Huska K; Lemmer U; Bastian G; Johnston MB; Fischer M; Faist J; Dekorsy T
    Opt Express; 2010 Mar; 18(5):4939-47. PubMed ID: 20389505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.