These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18071473)

  • 1. Suppression of classic and quantum radiation pressure noise by electro-optic feedback.
    Buchler BC; Gray MB; Shaddock DA; Ralph TC; McClelland DE
    Opt Lett; 1999 Feb; 24(4):259-61. PubMed ID: 18071473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme.
    Trad Nery M; Danilishin SL; Venneberg JR; Willke B
    Opt Lett; 2020 Jul; 45(14):3969-3972. PubMed ID: 32667330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser power stabilization via radiation pressure.
    Trad Nery M; Venneberg JR; Aggarwal N; Cole GD; Corbitt T; Cripe J; Lanza R; Willke B
    Opt Lett; 2021 Apr; 46(8):1946-1949. PubMed ID: 33857112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unconditional quantum-noise suppression via measurement-based quantum feedback.
    Inoue R; Tanaka SR; Namiki R; Sagawa T; Takahashi Y
    Phys Rev Lett; 2013 Apr; 110(16):163602. PubMed ID: 23679601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband near-to-shot-noise suppression of arbitrary cw-laser excess intensity noise in the gigahertz range.
    Michael EA; Pallanca L
    Opt Lett; 2015 Apr; 40(7):1334-7. PubMed ID: 25831326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scheme for improving laser stability via feedback control of intracavity nonlinear loss.
    Jin P; Lu H; Su J; Peng K
    Appl Opt; 2016 May; 55(13):3478-82. PubMed ID: 27140359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong suppression of shot noise in a feedback-controlled single-electron transistor.
    Wagner T; Strasberg P; Bayer JC; Rugeramigabo EP; Brandes T; Haug RJ
    Nat Nanotechnol; 2017 Mar; 12(3):218-222. PubMed ID: 27819692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing a fiber-based frequency comb with electro-optic modulator.
    Zhang W; Lours M; Fischer M; Holzwarth R; Santarelli G; Coq Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):432-8. PubMed ID: 22481776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent control of quantum fluctuations using cavity electromagnetically induced transparency.
    Souza JA; Figueroa E; Chibani H; Villas-Boas CJ; Rempe G
    Phys Rev Lett; 2013 Sep; 111(11):113602. PubMed ID: 24074086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator.
    Swann WC; Baumann E; Giorgetta FR; Newbury NR
    Opt Express; 2011 Nov; 19(24):24387-95. PubMed ID: 22109466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator.
    Lee CC; Mohr C; Bethge J; Suzuki S; Fermann ME; Hartl I; Schibli TR
    Opt Lett; 2012 Aug; 37(15):3084-6. PubMed ID: 22859093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcycle quantum electrodynamics.
    Riek C; Sulzer P; Seeger M; Moskalenko AS; Burkard G; Seletskiy DV; Leitenstorfer A
    Nature; 2017 Jan; 541(7637):376-379. PubMed ID: 28102239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5 nm.
    Guo X; Wang X; Li Y; Zhang K
    Appl Opt; 2009 Nov; 48(33):6475-8. PubMed ID: 19935968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diode laser frequency-noise suppression by >50dB by use of electro-optic parametric master oscillators.
    Wolf A; Bodermann B; Telle HR
    Opt Lett; 2000 Aug; 25(15):1098-100. PubMed ID: 18064283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical feedback frequency stabilized cavity ring-down spectroscopy.
    Burkart J; Romanini D; Kassi S
    Opt Lett; 2014 Aug; 39(16):4695-8. PubMed ID: 25121851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of scalable sub-Poissonian-field lasing in a microlaser.
    Ann BM; Song Y; Kim J; Yang D; An K
    Sci Rep; 2019 Nov; 9(1):17110. PubMed ID: 31745233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser.
    Zhao Q; Xu S; Zhou K; Yang C; Li C; Feng Z; Peng M; Deng H; Yang Z
    Opt Lett; 2016 Apr; 41(7):1333-5. PubMed ID: 27192229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.
    Suh J; Weinstein AJ; Lei CU; Wollman EE; Steinke SK; Meystre P; Clerk AA; Schwab KC
    Science; 2014 Jun; 344(6189):1262-5. PubMed ID: 24831528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction and possible elimination of coating thermal noise using a rigidly controlled cavity with a quantum-nondemolition technique.
    Somiya K
    Phys Rev Lett; 2009 Jun; 102(23):230801. PubMed ID: 19658917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator.
    Hudson DD; Holman KW; Jones RJ; Cundiff ST; Ye J; Jones DJ
    Opt Lett; 2005 Nov; 30(21):2948-50. PubMed ID: 16279478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.