These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18071475)

  • 1. Multilayer volume holographic optical memory.
    Markov V; Millerd J; Trolinger J; Norrie M; Downie J; Timucin D
    Opt Lett; 1999 Feb; 24(4):265-7. PubMed ID: 18071475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shift multiplexing with a spherical wave in holographic data storage based on a computer-generated hologram.
    Nobukawa T; Nomura T
    Appl Opt; 2017 May; 56(13):F31-F36. PubMed ID: 28463296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording.
    Miura M; Matoba O; Nitta K; Yoshimura T
    Appl Opt; 2007 Mar; 46(9):1460-6. PubMed ID: 17334436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photorefractive crystal-based holographic interferometry system for full-field wave propagation metrology.
    Liou JD; Lee CK; Wu KC
    Opt Express; 2007 Apr; 15(9):5460-72. PubMed ID: 19532801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-hologram recording with one-beam encoding.
    Chiang CS; Shiu MT; Wu WH; Yeh NG; Chang CC
    Opt Express; 2012 Mar; 20(7):6897-904. PubMed ID: 22453367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Photorefraction in Vanadium-Doped Lithium Niobate through Iron and Zirconium Co-Doping.
    Saeed S; Liu H; Xue L; Zheng D; Liu S; Chen S; Kong Y; Rupp R; Xu J
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing.
    Miura M; Nitta K; Matoba O
    J Opt Soc Am A Opt Image Sci Vis; 2009 Oct; 26(10):2269-74. PubMed ID: 19798408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume hologram scheme using optical fiber for spatial multiplexing.
    Kang YH; Kim KH; Lee B
    Opt Lett; 1997 May; 22(10):739-41. PubMed ID: 18185646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental holographic read-write memory using 3-d storage.
    d'Auria L; Huignard JP; Slezak C; Spitz E
    Appl Opt; 1974 Apr; 13(4):808-18. PubMed ID: 20126086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of photorefractive properties and holographic applications of lithium niobate crystal.
    Guo Y; Liao Y; Cao L; Liu G; He Q; Jin G
    Opt Express; 2004 Nov; 12(22):5556-61. PubMed ID: 19484118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of holographic recording with focused beams in iron-doped lithium niobate crystals.
    Kalkum F; Peithmann K; Buse K
    Opt Express; 2009 Feb; 17(3):1321-9. PubMed ID: 19188960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic storage using shift multiplexing.
    Psaltis D; Levene M; Pu A; Barbastathis G; Curtis K
    Opt Lett; 1995 Apr; 20(7):782-4. PubMed ID: 19859328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction properties of transmission photorefractive volume gratings in a cerium-doped potassium sodium strontium barium niobate crystal.
    Liang BL; Wang ZQ; Mu GG; Guan JH; Cartwright CM
    Appl Opt; 1999 Sep; 38(26):5552-5. PubMed ID: 18324065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation.
    Frejlich J; de Oliveira I; Arizmendi L; Carrascosa M
    Appl Opt; 2007 Jan; 46(2):227-33. PubMed ID: 17268568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers.
    Bai YS; Neurgaonkar RR; Kachru R
    Opt Lett; 1997 Mar; 22(5):334-6. PubMed ID: 18183193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Storage density of shift-multiplexed holographic memory.
    Steckman GJ; Pu A; Psaltis D
    Appl Opt; 2001 Jul; 40(20):3387-94. PubMed ID: 18360364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed phase-conjugate holographic data storage with a buffer hologram.
    Burr GW; Leyva I
    Opt Lett; 2000 Apr; 25(7):499-501. PubMed ID: 18064092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the fast-Fourier-transform-based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage.
    Gombköto B; Koppa P; Maák P; Lorincz E
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2954-60. PubMed ID: 17047723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incremental holographic recording in lithium niobate with active phase locking.
    Peithmann K; Wiebrock A; Buse K
    Opt Lett; 1998 Dec; 23(24):1927-9. PubMed ID: 18091958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic phase-shift measurement during development of a fixed grating in lithium niobate crystals.
    de Oliveira I; Frejlich J; Arizmendi L; Carrascosa M
    Opt Lett; 2003 Jun; 28(12):1040-2. PubMed ID: 12836772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.