These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. Kunnen B; Macdonald C; Doronin A; Jacques S; Eccles M; Meglinski I J Biophotonics; 2015 Apr; 8(4):317-23. PubMed ID: 25328034 [TBL] [Abstract][Full Text] [Related]
24. Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT). Kemp N; Zaatari H; Park J; Rylander Iii HG; Milner T Opt Express; 2005 Jun; 13(12):4507-18. PubMed ID: 19495365 [TBL] [Abstract][Full Text] [Related]
25. Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Pierce M; Shishkov M; Park B; Nassif N; Bouma B; Tearney G; de Boer J Opt Express; 2005 Jul; 13(15):5739-49. PubMed ID: 19498576 [TBL] [Abstract][Full Text] [Related]
26. Imaging of human aortic atherosclerotic plaques by polarization-sensitive optical coherence tomography. Kuo WC; Shyu JJ; Chou NK; Lai CM; Huang HC; Chou C; Jan GJ Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1222-4. PubMed ID: 17271908 [TBL] [Abstract][Full Text] [Related]
27. Investigating the depolarization property of skin tissue by degree of polarization uniformity contrast using polarization-sensitive optical coherence tomography. Zhou X; Maloufi S; Louie DC; Zhang N; Liu Q; Lee TK; Tang S Biomed Opt Express; 2021 Aug; 12(8):5073-5088. PubMed ID: 34513243 [TBL] [Abstract][Full Text] [Related]
28. Determination of burn depth by polarization-sensitive optical coherence tomography. Srinivas SM; de Boer JF; Park H; Keikhanzadeh K; Huang HE; Zhang J; Jung WQ; Chen Z; Nelson JS J Biomed Opt; 2004; 9(1):207-12. PubMed ID: 14715075 [TBL] [Abstract][Full Text] [Related]
29. Improved accuracy of quantitative birefringence imaging by polarization sensitive OCT with simple noise correction and its application to neuroimaging. Baumann B; Harper DJ; Eugui P; Gesperger J; Lichtenegger A; Merkle CW; Augustin M; Woehrer A J Biophotonics; 2021 Apr; 14(4):e202000323. PubMed ID: 33332741 [TBL] [Abstract][Full Text] [Related]
30. Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Kemp N; Zaatari H; Park J; Rylander Iii HG; Milner T Opt Express; 2005 Jun; 13(12):4611-28. PubMed ID: 19495377 [TBL] [Abstract][Full Text] [Related]
31. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. Kim KH; Pierce MC; Maguluri G; Park BH; Yoon SJ; Lydon M; Sheridan R; de Boer JF J Biomed Opt; 2012 Jun; 17(6):066012. PubMed ID: 22734768 [TBL] [Abstract][Full Text] [Related]
32. Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography. Götzinger E; Pircher M; Dejaco-Ruhswurm I; Kaminski S; Skorpik C; Hitzenberger CK Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3551-8. PubMed ID: 17652723 [TBL] [Abstract][Full Text] [Related]
33. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Jones RS; Darling CL; Featherstone JD; Fried D Caries Res; 2006; 40(2):81-9. PubMed ID: 16508263 [TBL] [Abstract][Full Text] [Related]
34. Polarization sensitive subcutaneous and muscular imaging based on common path optical coherence tomography using near infrared source. Han JH; Kang JU; Song CG J Med Syst; 2011 Aug; 35(4):521-6. PubMed ID: 20703538 [TBL] [Abstract][Full Text] [Related]
35. Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Cense B; Chen TC; Park BH; Pierce MC; de Boer JF Opt Lett; 2002 Sep; 27(18):1610-2. PubMed ID: 18026517 [TBL] [Abstract][Full Text] [Related]
36. Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations. Tang P; Kirby MA; Le N; Li Y; Zeinstra N; Lu GN; Murry CE; Zheng Y; Wang RK Light Sci Appl; 2021 Nov; 10(1):237. PubMed ID: 34819490 [TBL] [Abstract][Full Text] [Related]
37. Constrained polarization evolution simplifies depth-resolved retardation measurements with polarization-sensitive optical coherence tomography. Xiong Q; Wang N; Liu X; Chen S; Braganza CS; Bouma BE; Liu L; Villiger M Biomed Opt Express; 2019 Oct; 10(10):5207-5222. PubMed ID: 31646042 [TBL] [Abstract][Full Text] [Related]
38. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin. Ren H; Ding Z; Zhao Y; Miao J; Nelson JS; Chen Z Opt Lett; 2002 Oct; 27(19):1702-4. PubMed ID: 18033341 [TBL] [Abstract][Full Text] [Related]
39. In vivo imaging of the depth-resolved optic axis of birefringence in human skin. Li Q; Sampson DD; Villiger M Opt Lett; 2020 Sep; 45(17):4919-4922. PubMed ID: 32870890 [TBL] [Abstract][Full Text] [Related]