These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18071488)

  • 1. Amplifying volume in scattering media.
    van Soest G; Tomita M; Lagendijk A
    Opt Lett; 1999 Mar; 24(5):306-8. PubMed ID: 18071488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte carlo analysis of two-photon fluorescence imaging through a scattering medium.
    Blanca CM; Saloma C
    Appl Opt; 1998 Dec; 37(34):8092-102. PubMed ID: 18301703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation with a focused, pulsed optical beam in scattering media: diffraction effects.
    Daria VR; Saloma C; Kawata S
    Appl Opt; 2000 Oct; 39(28):5244-55. PubMed ID: 18354521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-color excitation fluorescence microscopy through highly scattering media.
    Blanca CM; Saloma C
    Appl Opt; 2001 Jun; 40(16):2722-9. PubMed ID: 18357289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lasing in a random amplifying medium: spatiotemporal characteristics and nonadiabatic atomic dynamics.
    Florescu L; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036607. PubMed ID: 15524656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media.
    Ahmed SA; Zang ZW; Yoo KM; Ali MA; Alfano RR
    Appl Opt; 1994 May; 33(13):2746-50. PubMed ID: 20885633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random laser oscillation from an organic fluorescent dye loaded inside a porous zirconia medium.
    Sakurayama Y; Onodera T; Araki Y; Wada T; Oikawa H
    RSC Adv; 2021 Sep; 11(51):32030-32037. PubMed ID: 35495517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angular distribution of laser-induced fluorescence emission of active dyes in scattering media.
    Bavali A; Parvin P; Tavassoli M; Mohebbifar MR
    Appl Opt; 2018 Mar; 57(7):B32-B38. PubMed ID: 29522036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation.
    Gan X; Gu M
    Appl Opt; 2000 Apr; 39(10):1575-9. PubMed ID: 18345054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between two lasing modes of Sulforhodamine 640 in highly scattering media.
    Sha WL; Liu CH; Liu F; Alfano RR
    Opt Lett; 1996 Aug; 21(16):1277-9. PubMed ID: 19876324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of fluorophore mixtures in biological media using fluorescence spectroscopy and Monte Carlo simulation.
    Lakhal L; Acha V; Aussenac T
    Appl Spectrosc; 2014; 68(7):697-711. PubMed ID: 25014836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model.
    Wang LV
    Opt Lett; 2001 Aug; 26(15):1191-3. PubMed ID: 18049559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Third-harmonic generation microscopy in highly scattering media.
    Blanca CM; Saloma C
    Appl Opt; 2000 Oct; 39(28):5187-93. PubMed ID: 18354515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasing in active, sub-mean-free path-sized systems with dense, random, weak scatterers.
    Prasad BR; Ramachandran H; Sood AK; Subramanian CK; Kumar N
    Appl Opt; 1997 Oct; 36(30):7718-24. PubMed ID: 18264291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta.
    Keijzer M; Richards-Kortum RR; Jacques SL; Feld MS
    Appl Opt; 1989 Oct; 28(20):4286-92. PubMed ID: 20555864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic scattering of light in random media: incoherent backscattered spotlight.
    Snabre P; Arhaliass A
    Appl Opt; 1998 Jun; 37(18):4017-26. PubMed ID: 18273374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-dependent laser action in a two-dimensional random medium.
    Ito T; Tomita M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):027601. PubMed ID: 12241331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial threshold in amplifying random media.
    El-Dardiry RG; Mosk AP; Lagendijk A
    Opt Lett; 2010 Sep; 35(18):3063-5. PubMed ID: 20847779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.