These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18071493)

  • 1. Resonant photorefractive effect in InGaAs/GaAs multiple quantum wells.
    Iwamoto S; Kageshima H; Yuasa T; Nishioka M; Someya T; Arakawa Y; Fukutani K; Shimura T; Kuroda K
    Opt Lett; 1999 Mar; 24(5):321-3. PubMed ID: 18071493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant photodiffractive four-wave mixing in semi-insulating GaAs/AlGaAs quantum wells.
    Glass AM; Nolte DD; Olson DH; Doran GE; Chemla DS; Knox WH
    Opt Lett; 1990 Mar; 15(5):264-6. PubMed ID: 19759777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photorefractive multiple quantum wells at 1064 nm.
    Iwamoto S; Taketomi S; Kageshima H; Nishioka M; Someya T; Arakawa Y; Fukutani K; Shimura T; Kuroda K
    Opt Lett; 2001 Jan; 26(1):22-4. PubMed ID: 18033494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial-harmonic gratings at high modulation depths in photorefractive quantum wells.
    Wang QN; Nolte DD; Melloch MR
    Opt Lett; 1991 Dec; 16(24):1944-6. PubMed ID: 19784189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures.
    Yan X; Zhang X; Li J; Wu Y; Cui J; Ren X
    Nanoscale; 2015 Jan; 7(3):1110-5. PubMed ID: 25482135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and excitation-power-density-dependent micro-photoluminescence of hexagonal nanopillars with a single InGaAs/GaAs quantum well.
    Yang L; Motohisa J; Tomioka K; Takeda J; Fukui T; Geng MM; Jia LX; Zhang L; Liu YL
    Nanotechnology; 2008 Jul; 19(27):275304. PubMed ID: 21828700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot.
    Dusanowski Ł; Holewa P; Maryński A; Musiał A; Heuser T; Srocka N; Quandt D; Strittmatter A; Rodt S; Misiewicz J; Reitzenstein S; Sęk G
    Opt Express; 2017 Dec; 25(25):31122-31129. PubMed ID: 29245789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photorefractive response time measurement in GaAs crystals by phase modulation in two-wave mixing.
    Bian S; Frejlich J
    Opt Lett; 1994 Nov; 19(21):1702-4. PubMed ID: 19855627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflection-geometry photorefractive quantum wells.
    Nolte DD; Lahiri I; Melloch MR
    Opt Lett; 1996 Dec; 21(23):1888-90. PubMed ID: 19881835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beam coupling in undoped GaAs at 1.06 microm using the photorefractive effect.
    Klein MB
    Opt Lett; 1984 Aug; 9(8):350-2. PubMed ID: 19721595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Area Epitaxy of Highly Strained InGaAs Quantum Wells (980-990 nm) in Ultrawide Windows Using Metalorganic Chemical Vapor Deposition.
    Shamakhov V; Slipchenko S; Nikolaev D; Smirnov A; Eliseyev I; Grishin A; Kondratov M; Shashkin I; Pikhtin N
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of substrate misorientation on the photoluminescence and structural properties of InGaAs/GaAsP multiple quantum wells.
    Dong H; Sun J; Ma S; Liang J; Lu T; Liu X; Xu B
    Nanoscale; 2016 Mar; 8(11):6043-56. PubMed ID: 26926840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical gain analysis of GaAs-based InGaAs/GaAsSbBi type-II quantum wells lasers.
    Chen B
    Opt Express; 2017 Oct; 25(21):25183-25192. PubMed ID: 29041188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of potential barrier height on the carrier transport in InGaAs/GaAsP multi-quantum wells and photoelectric properties of laser diode.
    Dong H; Sun J; Ma S; Liang J; Lu T; Jia Z; Liu X; Xu B
    Phys Chem Chem Phys; 2016 Mar; 18(9):6901-12. PubMed ID: 26879291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Quantum Well Structure and Growth Temperature on a Five-Layer InGaMnAs Quantum Well with an InGaAs Buffer Layer.
    Yoon IT; Lee S; Roshchupkin DV; Panin GN
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4355-4359. PubMed ID: 29442787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed photodiffractive effect in semi-insulating CdZnTe/ZnTe multiple quantum wells.
    Partovi A; Glass AM; Olson DH; Zydzik GJ; Short KT; Feldman RD; Austin RF
    Opt Lett; 1992 May; 17(9):655-7. PubMed ID: 19794588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential.
    Xu Z; Wang C; Qi W; Yuan Z
    Opt Lett; 2010 Mar; 35(5):736-8. PubMed ID: 20195336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active holography in InGaAs/InP quantum-well microcavities.
    Sun H; Nolte DD; Hyland J; Harmon E
    Opt Lett; 2013 Aug; 38(15):2792-5. PubMed ID: 23903144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.