These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18071671)

  • 1. Clinical applications of photoplethysmography in paediatric intensive care.
    Frey B; Waldvogel K; Balmer C
    Intensive Care Med; 2008 Mar; 34(3):578-82. PubMed ID: 18071671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive monitoring using photoplethysmography technology.
    Tomita K; Nakada TA; Oshima T; Oami T; Aizimu T; Oda S
    J Clin Monit Comput; 2019 Aug; 33(4):637-645. PubMed ID: 30284687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive monitoring by photoplethysmography.
    Sahni R
    Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse oximetry for assessment of pulsus paradoxus: a clinical study in children.
    Frey B; Butt W
    Intensive Care Med; 1998 Mar; 24(3):242-6. PubMed ID: 9565806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoplethysmography for simultaneous recording of heart and respiratory rates in newborn infants.
    Olsson E; Ugnell H; Oberg PA; Sedin G
    Acta Paediatr; 2000 Jul; 89(7):853-61. PubMed ID: 10943970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of heart and respiratory rates in newborn infants using a new photoplethysmographic technique.
    Johansson A; Oberg PA; Sedin G
    J Clin Monit Comput; 1999 Dec; 15(7-8):461-7. PubMed ID: 12578044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse oximetry in the oesophagus.
    Kyriacou PA
    Physiol Meas; 2006 Jan; 27(1):R1-35. PubMed ID: 16365505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit - a pilot study.
    Aarts LA; Jeanne V; Cleary JP; Lieber C; Nelson JS; Bambang Oetomo S; Verkruysse W
    Early Hum Dev; 2013 Dec; 89(12):943-8. PubMed ID: 24135159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring arterial oxygen saturation from an intraosseous photoplethysmographic signal derived from the sternum.
    Näslund E; Lindberg LG; Lund I; Näslund-Koch L; Larsson A; Frithiof R
    J Clin Monit Comput; 2020 Feb; 34(1):55-62. PubMed ID: 30805761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Uses of Pulse Oximetry for Monitoring Mechanically Ventilated Patients.
    Tusman G; Bohm SH; Suarez-Sipmann F
    Anesth Analg; 2017 Jan; 124(1):62-71. PubMed ID: 27183375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure.
    Payne RA; Symeonides CN; Webb DJ; Maxwell SR
    J Appl Physiol (1985); 2006 Jan; 100(1):136-41. PubMed ID: 16141378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device.
    Høiseth LØ; Hoff IE; Hagen OA; Kirkebøen KA; Landsverk SA
    J Clin Monit Comput; 2016 Jun; 30(3):317-25. PubMed ID: 26067403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement.
    Foo JY; Wilson SJ
    J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the photoplethysmographic waveform and systemic vascular resistance.
    Awad AA; Haddadin AS; Tantawy H; Badr TM; Stout RG; Silverman DG; Shelley KH
    J Clin Monit Comput; 2007 Dec; 21(6):365-72. PubMed ID: 17940842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring patients with continuous-flow ventricular assist devices outside of the intensive care unit: novel challenges to bedside nursing.
    O'Shea G; Teuteberg JJ; Severyn DA
    Prog Transplant; 2013 Mar; 23(1):39-46. PubMed ID: 23448819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval.
    Fischer C; Penzel T
    Physiol Meas; 2019 Jan; 40(1):014001. PubMed ID: 30523856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in photoplethysmography: beyond arterial oxygen saturation.
    Bartels K; Thiele RH
    Can J Anaesth; 2015 Dec; 62(12):1313-28. PubMed ID: 26286382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless monitoring and real-time adaptive predictive indicator of deterioration.
    Duncan HP; Fule B; Rice I; Sitch AJ; Lowe D
    Sci Rep; 2020 Jul; 10(1):11366. PubMed ID: 32647214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of traditional and plethysmographic methods for measuring pulsus paradoxus.
    Clark JA; Lieh-Lai M; Thomas R; Raghavan K; Sarnaik AP
    Arch Pediatr Adolesc Med; 2004 Jan; 158(1):48-51. PubMed ID: 14706958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous blood pressure monitoring using ECG and finger photoplethysmogram.
    Chua CP; Heneghan C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5117-20. PubMed ID: 17946678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.