These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18071679)

  • 21. Human critical power-oxygen uptake relationship at different pedalling frequencies.
    Barker T; Poole DC; Noble ML; Barstow TJ
    Exp Physiol; 2006 May; 91(3):621-32. PubMed ID: 16527863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pedalling rates on physiological response during endurance cycling.
    Lepers R; Millet GY; Maffiuletti NA; Hausswirth C; Brisswalter J
    Eur J Appl Physiol; 2001 Aug; 85(3-4):392-5. PubMed ID: 11560096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J; Szkutnik Z; Karasinski J; Duda K; Kolodziejski L; Zoladz JA
    J Physiol Pharmacol; 2006 Jun; 57(2):199-215. PubMed ID: 16845226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans.
    Hintzy F; Belli A; Grappe F; Rouillon JD
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):426-32. PubMed ID: 10208252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling.
    Theurel J; Crepin M; Foissac M; Temprado JJ
    Scand J Med Sci Sports; 2012 Dec; 22(6):714-21. PubMed ID: 21507064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises.
    Hansen EA; Voigt M; Kersting UG; Madeleine P
    Motor Control; 2014 Jul; 18(3):297-309. PubMed ID: 24457176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling.
    Hansen EA; Jensen K; Hallén J; Rasmussen J; Pedersen PK
    J Physiol Anthropol; 2009 Nov; 28(6):261-7. PubMed ID: 20009373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance following prolonged sub-maximal cycling at optimal versus freely chosen pedal rate.
    Hansen EA; Jensen K; Pedersen PK
    Eur J Appl Physiol; 2006 Oct; 98(3):227-33. PubMed ID: 16906415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of pedalling cadence on respiratory frequency: passive vs. active exercise of different intensities.
    Girardi M; Nicolò A; Bazzucchi I; Felici F; Sacchetti M
    Eur J Appl Physiol; 2021 Feb; 121(2):583-596. PubMed ID: 33165638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of saddle setback on pedalling technique effectiveness in cycling.
    Menard M; Domalain M; Decatoire A; Lacouture P
    Sports Biomech; 2016 Nov; 15(4):462-72. PubMed ID: 27239728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the slope of oxygen consumption and EMG activity on freely chosen pedal rate selection.
    Bessot N; Moussay S; Laborde S; Gauthier A; Sesboüé B; Davenne D
    Eur J Appl Physiol; 2008 May; 103(2):195-202. PubMed ID: 18266000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of pedal rate on diurnal variations in cardiorespiratory variables.
    Bessot N; Moussay S; Gauthier A; Larue J; Sesboüe B; Davenne D
    Chronobiol Int; 2006; 23(4):877-87. PubMed ID: 16887754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Which factors determine the freely chosen cadence during submaximal cycling?
    Vercruyssen F; Brisswalter J
    J Sci Med Sport; 2010 Mar; 13(2):225-31. PubMed ID: 19342296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unprompted Alteration of Freely Chosen Movement Rate During Stereotyped Rhythmic Movement: Examples and Review.
    Hansen EA
    Motor Control; 2021 Apr; 25(3):385-402. PubMed ID: 33883299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concurrent and Construct Validation of a Scale for Rating Perceived Exertion in Aquatic Cycling for Young Men.
    Colado JC; Brasil RM
    J Sports Sci Med; 2019 Dec; 18(4):695-707. PubMed ID: 31827354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.
    Munera M; Bertucci W; Duc S; Chiementin X
    J Sports Sci; 2018 Jul; 36(13):1465-1475. PubMed ID: 29099665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic stability of locomotor respiratory coupling during cycling in humans.
    Villard S; Casties JF; Mottet D
    Neurosci Lett; 2005 Aug; 383(3):333-8. PubMed ID: 15878235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase space methods for non-linear analysis of pedalling forces in cycling.
    Kunert A; Ott M; Reuter T; Koska D; Maiwald C
    PLoS One; 2019; 14(4):e0198914. PubMed ID: 30998746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise duration.
    Brisswalter J; Hausswirth C; Smith D; Vercruyssen F; Vallier JM
    Int J Sports Med; 2000 Jan; 21(1):60-4. PubMed ID: 10683101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.