These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18071680)

  • 1. Guidance of visual direction by topographical vibrotactile cues on the torso.
    Asseman F; Bronstein AM; Gresty MA
    Exp Brain Res; 2008 Mar; 186(2):283-92. PubMed ID: 18071680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual signals contribute to the coding of gaze direction.
    Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM
    Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pre-cues on voluntary and reflexive saccade generation. I. Anti-cues for pro-saccades.
    Fischer B; Weber H
    Exp Brain Res; 1998 Jun; 120(4):403-16. PubMed ID: 9655226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal facilitation of gaze in the presence of postural reactions triggered by sudden surface perturbations.
    Paquette C; Fung J
    Neuroscience; 2007 Mar; 145(2):505-19. PubMed ID: 17258863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling between horizontal and vertical components of saccadic eye movements during constant amplitude and direction gaze shifts in the rhesus monkey.
    Freedman EG
    J Neurophysiol; 2008 Dec; 100(6):3375-93. PubMed ID: 18945817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prior information and oculomotor initiation: the effect of cues in gaps.
    Knox PC
    Exp Brain Res; 2009 Jan; 192(1):75-85. PubMed ID: 18762927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human updating of visual motion direction during head rotations.
    Ruiz-Ruiz M; Martinez-Trujillo JC
    J Neurophysiol; 2008 May; 99(5):2558-76. PubMed ID: 18337365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccades and smooth pursuit eye movements trigger equivalent gaze-cued orienting effects.
    Langton SR; McIntyre AH; Hancock PJ; Leder H
    Q J Exp Psychol (Hove); 2018 Sep; 71(9):1860-1872. PubMed ID: 28760076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vestibuloocular reflex inhibition and gaze saccade control characteristics during eye-head orientation in humans.
    Pelisson D; Prablanc C; Urquizar C
    J Neurophysiol; 1988 Mar; 59(3):997-1013. PubMed ID: 3367207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perception of static eye gaze direction facilitates subsequent early visual processing.
    Schuller AM; Rossion B
    Clin Neurophysiol; 2004 May; 115(5):1161-8. PubMed ID: 15066541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anti-orienting phenomenon revisited: effects of gaze cues on antisaccade performance.
    Wolohan FD; Crawford TJ
    Exp Brain Res; 2012 Sep; 221(4):385-92. PubMed ID: 22797785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades.
    Schneider L; Dominguez-Vargas AU; Gibson L; Kagan I; Wilke M
    J Neurophysiol; 2020 Jan; 123(1):367-391. PubMed ID: 31747331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional shifts by gaze direction in voluntary orienting: evidence from a microsaccade study.
    Yokoyama T; Noguchi Y; Kita S
    Exp Brain Res; 2012 Nov; 223(2):291-300. PubMed ID: 23001417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccades to somatosensory targets. II. motor convergence in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):428-38. PubMed ID: 8822568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing spatially static and dynamic vibrotactile take-over requests in the driver seat.
    Petermeijer SM; Cieler S; de Winter JCF
    Accid Anal Prev; 2017 Feb; 99(Pt A):218-227. PubMed ID: 27978486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial selectivity in adaptation to gaze direction.
    Palmer CJ; Clifford CWG
    Proc Biol Sci; 2022 Aug; 289(1980):20221230. PubMed ID: 35946160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Egocentric localization of a perisaccadic flash by manual pointing.
    Miller JM
    Vision Res; 1996 Mar; 36(6):837-51. PubMed ID: 8736219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference frames for coding touch location depend on the task.
    Pritchett LM; Carnevale MJ; Harris LR
    Exp Brain Res; 2012 Oct; 222(4):437-45. PubMed ID: 22941315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.