BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 18072490)

  • 1. Automated breast segmentation of fat and water MR images using dynamic programming.
    Rosado-Toro JA; Barr T; Galons JP; Marron MT; Stopeck A; Thomson C; Thompson P; Carroll D; Wolf E; Altbach MI; Rodríguez JJ
    Acad Radiol; 2015 Feb; 22(2):139-48. PubMed ID: 25572926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of Shape-Based Descriptors and Mass Segmentation Areas on Initial Contour Placement Using the Chan-Vese Method on Digital Mammograms.
    Acho SN; Rae WI
    Comput Math Methods Med; 2015; 2015():349874. PubMed ID: 26379762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Segmentation of MRI Images in Dynamic Programming Mode.
    Marusina MY; Karaseva EA
    Asian Pac J Cancer Prev; 2018 Oct; 19(10):2771-2775. PubMed ID: 30360605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images.
    Guo H; Li M; Liu H; Chen X; Cheng Z; Li X; Yu H; He Q
    Comput Biol Med; 2024 Jan; 168():107769. PubMed ID: 38039898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Multiple-Objective Optimization for Efficient and Effective Test Paper Design with Dynamic Programming Guided Genetic Algorithm.
    Wang H; Zhuge Q; Sha EH; Xia J; Xu R
    Math Biosci Eng; 2024 Feb; 21(3):3668-3694. PubMed ID: 38549301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole mammographic mass segmentation using attention mechanism and multiscale pooling adversarial network.
    Wang Y; Wang S; Chen J; Wu C
    J Med Imaging (Bellingham); 2020 Sep; 7(5):054503. PubMed ID: 33102621
    [No Abstract]   [Full Text] [Related]  

  • 7. Three-dimensional expansion of a dynamic programming method for boundary detection and its application to sequential magnetic resonance imaging (MRI).
    Cheng DC; Lin JT
    Sensors (Basel); 2012; 12(5):5195-211. PubMed ID: 22778580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu₅): from an artificial neural network virtual screen to an in vivo tool compound.
    Mueller R; Dawson ES; Meiler J; Rodriguez AL; Chauder BA; Bates BS; Felts AS; Lamb JP; Menon UN; Jadhav SB; Kane AS; Jones CK; Gregory KJ; Niswender CM; Conn PJ; Olsen CM; Winder DG; Emmitte KA; Lindsley CW
    ChemMedChem; 2012 Mar; 7(3):406-14. PubMed ID: 22267125
    [No Abstract]   [Full Text] [Related]  

  • 9. Detection of cancerous masses in mammograms by template matching: optimization of template brightness distribution by means of evolutionary algorithm.
    Bator M; Nieniewski M
    J Digit Imaging; 2012 Feb; 25(1):162-72. PubMed ID: 21748410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image analysis in medical imaging: recent advances in selected examples.
    Dougherty G
    Biomed Imaging Interv J; 2010; 6(3):e32. PubMed ID: 21611048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic detection of the carotid artery boundary on cross-sectional MR image sequences using a circle model guided dynamic programming.
    Cheng DC; Billich C; Liu SH; Brunner H; Qiu YC; Shen YL; Brambs HJ; Schmidt-Trucksäss A; Schütz UH
    Biomed Eng Online; 2011 Apr; 10():26. PubMed ID: 21477378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker-controlled watershed for lesion segmentation in mammograms.
    Xu S; Liu H; Song E
    J Digit Imaging; 2011 Oct; 24(5):754-63. PubMed ID: 21327973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilevel learning-based segmentation of ill-defined and spiculated masses in mammograms.
    Tao Y; Lo SC; Freedman MT; Makariou E; Xuan J
    Med Phys; 2010 Nov; 37(11):5993-6002. PubMed ID: 21158311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-Aided Diagnosis in Mammography Using Content-based Image Retrieval Approaches: Current Status and Future Perspectives.
    Zheng B
    Algorithms; 2009 Jun; 2(2):828-849. PubMed ID: 20305801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malignant lesion segmentation in contrast-enhanced breast MR images based on the marker-controlled watershed.
    Cui Y; Tan Y; Zhao B; Liberman L; Parbhu R; Kaplan J; Theodoulou M; Hudis C; Schwartz LH
    Med Phys; 2009 Oct; 36(10):4359-69. PubMed ID: 19928066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers.
    Mu T; Nandi AK; Rangayyan RM
    J Digit Imaging; 2008 Jun; 21(2):153-69. PubMed ID: 18306000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms.
    Rojas Domínguez A; Nandi AK
    Med Phys; 2007 Nov; 34(11):4256-69. PubMed ID: 18072490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid segmentation of mass in mammograms using template matching and dynamic programming.
    Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC
    Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast mass segmentation in mammography using plane fitting and dynamic programming.
    Song E; Jiang L; Jin R; Zhang L; Yuan Y; Li Q
    Acad Radiol; 2009 Jul; 16(7):826-35. PubMed ID: 19362024
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.