These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18072767)

  • 1. Specific RNA self-assembly with minimal paranemic motifs.
    Afonin KA; Cieply DJ; Leontis NB
    J Am Chem Soc; 2008 Jan; 130(1):93-102. PubMed ID: 18072767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology.
    Shen Z; Yan H; Wang T; Seeman NC
    J Am Chem Soc; 2004 Feb; 126(6):1666-74. PubMed ID: 14871096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly.
    Sampedro Vallina N; McRae EKS; Geary C; Andersen ES
    Small; 2023 Mar; 19(13):e2204651. PubMed ID: 36526605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paranemic cohesion of topologically-closed DNA molecules.
    Zhang X; Yan H; Shen Z; Seeman NC
    J Am Chem Soc; 2002 Nov; 124(44):12940-1. PubMed ID: 12405808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-sensitivity of isosteric substitutions of non-Watson-Crick basepairs in recurrent RNA 3D motifs.
    Khisamutdinov EF; Sweeney BA; Leontis NB
    Nucleic Acids Res; 2021 Sep; 49(16):9574-9593. PubMed ID: 34403481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paranemic Crossover DNA: There and Back Again.
    Wang X; Chandrasekaran AR; Shen Z; Ohayon YP; Wang T; Kizer ME; Sha R; Mao C; Yan H; Zhang X; Liao S; Ding B; Chakraborty B; Jonoska N; Niu D; Gu H; Chao J; Gao X; Li Y; Ciengshin T; Seeman NC
    Chem Rev; 2019 May; 119(10):6273-6289. PubMed ID: 29911864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceptional Nuclease Resistance of Paranemic Crossover (PX) DNA and Crossover-Dependent Biostability of DNA Motifs.
    Chandrasekaran AR; Vilcapoma J; Dey P; Wong-Deyrup SW; Dey BK; Halvorsen K
    J Am Chem Soc; 2020 Apr; 142(14):6814-6821. PubMed ID: 32208657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals.
    Shen W; Liu Q; Ding B; Shen Z; Zhu C; Mao C
    Org Biomol Chem; 2016 Jul; 14(30):7187-90. PubMed ID: 27404049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.
    Parlea LG; Sweeney BA; Hosseini-Asanjan M; Zirbel CL; Leontis NB
    Methods; 2016 Jul; 103():99-119. PubMed ID: 27125735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E.
    Réblová K; Spacková N; Stefl R; Csaszar K; Koca J; Leontis NB; Sponer J
    Biophys J; 2003 Jun; 84(6):3564-82. PubMed ID: 12770867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications.
    Lee JY; Yang Q; Chang X; Wisniewski H; Olivera TR; Saji M; Kim S; Perumal D; Zhang F
    J Mater Chem B; 2022 Sep; 10(37):7460-7472. PubMed ID: 35912570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of forming a parallel DNA crossover.
    Spink CH; Ding L; Yang Q; Sheardy RD; Seeman NC
    Biophys J; 2009 Jul; 97(2):528-38. PubMed ID: 19619467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-level simulations of seeman DNA nanostructures: the paranemic crossover in salt solution.
    Maiti PK; Pascal TA; Vaidehi N; Heo J; Goddard WA
    Biophys J; 2006 Mar; 90(5):1463-79. PubMed ID: 16478709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA double-crossover molecules.
    Fu TJ; Seeman NC
    Biochemistry; 1993 Apr; 32(13):3211-20. PubMed ID: 8461289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flexibility of DNA double crossover molecules.
    Sa-Ardyen P; Vologodskii AV; Seeman NC
    Biophys J; 2003 Jun; 84(6):3829-37. PubMed ID: 12770888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure at 1.5 angstroms resolution of an RNA octamer duplex containing tandem G.U basepairs.
    Jang SB; Hung LW; Jeong MS; Holbrook EL; Chen X; Turner DH; Holbrook SR
    Biophys J; 2006 Jun; 90(12):4530-7. PubMed ID: 16581850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stability of Seeman JX DNA topoisomers of paranemic crossover (PX) molecules as a function of crossover number.
    Maiti PK; Pascal TA; Vaidehi N; Goddard WA
    Nucleic Acids Res; 2004; 32(20):6047-56. PubMed ID: 15550565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.