These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18073421)

  • 1. Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres.
    Mondoux MA; Scaife JG; Zakian VA
    Genetics; 2007 Dec; 177(4):2019-29. PubMed ID: 18073421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins.
    Mishra K; Shore D
    Curr Biol; 1999 Oct; 9(19):1123-6. PubMed ID: 10531008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres.
    Laroche T; Martin SG; Gotta M; Gorham HC; Pryde FE; Louis EJ; Gasser SM
    Curr Biol; 1998 May; 8(11):653-6. PubMed ID: 9635192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo.
    Bourns BD; Alexander MK; Smith AM; Zakian VA
    Mol Cell Biol; 1998 Sep; 18(9):5600-8. PubMed ID: 9710643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres.
    Wiley EA; Zakian VA
    Genetics; 1995 Jan; 139(1):67-79. PubMed ID: 7705652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres.
    Mondoux MA; Zakian VA
    Genetics; 2007 Dec; 177(4):2541-6. PubMed ID: 18073447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing.
    Boulton SJ; Jackson SP
    EMBO J; 1998 Mar; 17(6):1819-28. PubMed ID: 9501103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors.
    Smith JS; Caputo E; Boeke JD
    Mol Cell Biol; 1999 Apr; 19(4):3184-97. PubMed ID: 10082585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo.
    Enomoto S; McCune-Zierath PD; Gerami-Nejad M; Sanders MA; Berman J
    Genes Dev; 1997 Feb; 11(3):358-70. PubMed ID: 9030688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of yeast telomeres to the nuclear periphery is separable from transcriptional repression and telomere stability functions.
    Tham WH; Wyithe JS; Ko Ferrigno P; Silver PA; Zakian VA
    Mol Cell; 2001 Jul; 8(1):189-99. PubMed ID: 11511372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast Est2p affects telomere length by influencing association of Rap1p with telomeric chromatin.
    Ji H; Adkins CJ; Cartwright BR; Friedman KL
    Mol Cell Biol; 2008 Apr; 28(7):2380-90. PubMed ID: 18212041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of yeast telomeres and silencing proteins through the cell cycle.
    Laroche T; Martin SG; Tsai-Pflugfelder M; Gasser SM
    J Struct Biol; 2000 Apr; 129(2-3):159-74. PubMed ID: 10806066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of yeast telomeres from the nuclear periphery is triggered by replication and maintained by suppression of Ku-mediated anchoring.
    Ebrahimi H; Donaldson AD
    Genes Dev; 2008 Dec; 22(23):3363-74. PubMed ID: 19056887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing.
    Roy R; Meier B; McAinsh AD; Feldmann HM; Jackson SP
    J Biol Chem; 2004 Jan; 279(1):86-94. PubMed ID: 14551211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistatic interaction between the K-homology domain protein HEK2 and SIR1 at HMR and telomeres in yeast.
    Denisenko O; Bomsztyk K
    J Mol Biol; 2008 Jan; 375(4):1178-87. PubMed ID: 18067921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation.
    Ray A; Runge KW
    Mol Cell Biol; 1998 Mar; 18(3):1284-95. PubMed ID: 9488443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional elements involved in the repression of ribosomal protein synthesis.
    Li B; Nierras CR; Warner JR
    Mol Cell Biol; 1999 Aug; 19(8):5393-404. PubMed ID: 10409730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast telomeres exert a position effect on recombination between internal tracts of yeast telomeric DNA.
    Stavenhagen JB; Zakian VA
    Genes Dev; 1998 Oct; 12(19):3044-58. PubMed ID: 9765206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms.
    Tham WH; Zakian VA
    Oncogene; 2002 Jan; 21(4):512-21. PubMed ID: 11850776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A SIR-independent role for cohesin in subtelomeric silencing and organization.
    Kothiwal D; Laloraya S
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5659-5664. PubMed ID: 30842278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.