BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18073441)

  • 1. Zinc regulates the stability of repetitive minisatellite DNA tracts during stationary phase.
    Kelly MK; Jauert PA; Jensen LE; Chan CL; Truong CS; Kirkpatrick DT
    Genetics; 2007 Dec; 177(4):2469-79. PubMed ID: 18073441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minisatellite alterations in ZRT1 mutants occur via RAD52-dependent and RAD52-independent mechanisms in quiescent stationary phase yeast cells.
    Kelly MK; Alver B; Kirkpatrick DT
    DNA Repair (Amst); 2011 Jun; 10(6):556-66. PubMed ID: 21515092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple pathways regulate minisatellite stability during stationary phase in yeast.
    Kelly MK; Brosnan L; Jauert PA; Dunham MJ; Kirkpatrick DT
    G3 (Bethesda); 2012 Oct; 2(10):1185-95. PubMed ID: 23050229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells.
    Alver B; Jauert PA; Brosnan L; O'Hehir M; VanderSluis B; Myers CL; Kirkpatrick DT
    G3 (Bethesda); 2013 Apr; 3(4):741-756. PubMed ID: 23550123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length and sequence heterozygosity differentially affect HRAS1 minisatellite stability during meiosis in yeast.
    Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jun; 170(2):601-12. PubMed ID: 15834153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
    Zhao H; Eide DJ
    Mol Cell Biol; 1997 Sep; 17(9):5044-52. PubMed ID: 9271382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae.
    Jauert PA; Edmiston SN; Conway K; Kirkpatrick DT
    Mol Cell Biol; 2002 Feb; 22(3):953-64. PubMed ID: 11784870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of human minisatellite mutation in yeast.
    Cederberg H; Rannug U
    Mutat Res; 2006 Jun; 598(1-2):132-43. PubMed ID: 16581091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2.
    Bird AJ; Blankman E; Stillman DJ; Eide DJ; Winge DR
    EMBO J; 2004 Mar; 23(5):1123-32. PubMed ID: 14976557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t).
    Kokoska RJ; Stefanovic L; Tran HT; Resnick MA; Gordenin DA; Petes TD
    Mol Cell Biol; 1998 May; 18(5):2779-88. PubMed ID: 9566897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instability of the human minisatellite CEB1 in rad27Delta and dna2-1 replication-deficient yeast cells.
    Lopes J; Debrauwère H; Buard J; Nicolas A
    EMBO J; 2002 Jun; 21(12):3201-11. PubMed ID: 12065432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations at the human minisatellite MS32 integrated in yeast occur with high frequency in meiosis and involve complex recombination events.
    Appelgren H; Cederberg H; Rannug U
    Mol Gen Genet; 1997 Sep; 256(1):7-17. PubMed ID: 9341674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.
    Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ
    EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae.
    Maurer DJ; O'Callaghan BL; Livingston DM
    Mol Cell Biol; 1996 Dec; 16(12):6617-22. PubMed ID: 8943315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements.
    Zhao H; Butler E; Rodgers J; Spizzo T; Duesterhoeft S; Eide D
    J Biol Chem; 1998 Oct; 273(44):28713-20. PubMed ID: 9786867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screen for identifying small molecules that target fungal zinc homeostasis.
    Simm C; Luan CH; Weiss E; O'Halloran T
    PLoS One; 2011; 6(9):e25136. PubMed ID: 21980385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis.
    Milner MJ; Pence NS; Liu J; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):271-80. PubMed ID: 24433538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of sequence divergence between alleles of the human MS205 minisatellite incorporated into the yeast genome on length-mutation rates and lethal recombination events during meiosis.
    He Q; Cederberg H; Rannug U
    J Mol Biol; 2002 May; 319(2):315-27. PubMed ID: 12051909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansions and contractions in 36-bp minisatellites by gene conversion in yeast.
    Pâques F; Richard GF; Haber JE
    Genetics; 2001 May; 158(1):155-66. PubMed ID: 11333226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences.
    Kokoska RJ; Stefanovic L; Buermeyer AB; Liskay RM; Petes TD
    Genetics; 1999 Feb; 151(2):511-9. PubMed ID: 9927447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.