These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 1807354)
1. Membrane traffic after inhibition of endocytosis in renal proximal tubules. Cui SY; Christensen EI; Nielsen S J Struct Biol; 1991 Dec; 107(3):201-10. PubMed ID: 1807354 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructure of the vacuolar apparatus in the renal proximal tubule microinfused in vivo with the cytological stain light green. Cui S; Mata L; Maunsbach AB; Christensen EI Exp Nephrol; 1998; 6(4):359-67. PubMed ID: 9690099 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a decreased membrane recycling in the cells of renal proximal tubules exposed to high concentrations of ferritin. Christensen EI Cell Tissue Res; 1986; 243(1):101-8. PubMed ID: 3943118 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of endocytosis in renal proximal tubule studied with ruthenium red as membrane marker. Birn H; Christensen EI; Nielsen S Am J Physiol; 1993 Feb; 264(2 Pt 2):F239-50. PubMed ID: 7680532 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional organization of the vacuolar apparatus involved in endocytosis and membrane recycling of rat kidney proximal tubule cells. An electron-microscopic study of serial sections. Cui S; Christensen EI Exp Nephrol; 1993; 1(3):175-84. PubMed ID: 8081967 [TBL] [Abstract][Full Text] [Related]
6. Formation of apical tubules from large endocytic vacuoles in kidney proximal tubule cells during absorption of horseradish peroxidase. Hatae T; Fujita M; Sagara H; Okuyama K Cell Tissue Res; 1986; 246(2):271-8. PubMed ID: 3779809 [TBL] [Abstract][Full Text] [Related]
7. Endocytosis in proximal tubule cells involves a two-phase membrane-recycling pathway. Nielsen S Am J Physiol; 1993 Apr; 264(4 Pt 1):C823-35. PubMed ID: 8476017 [TBL] [Abstract][Full Text] [Related]
8. Effects of microtubule disruption on endocytosis, membrane recycling and polarized distribution of Aquaporin-1 and gp330 in proximal tubule cells. Elkjaer ML; Birn H; Agre P; Christensen EI; Nielsen S Eur J Cell Biol; 1995 May; 67(1):57-72. PubMed ID: 7543847 [TBL] [Abstract][Full Text] [Related]
9. Helical structure in the apical tubules of several absorbing epithelia. Kidney proximal tubule, visceral yolk sac and ductuli efferentes. Hatae T; Fujita M; Sagara H Cell Tissue Res; 1986; 244(1):39-46. PubMed ID: 3084103 [TBL] [Abstract][Full Text] [Related]
10. Internalization and intracellular transport of folate-binding protein in rat kidney proximal tubule. Birn H; Selhub J; Christensen EI Am J Physiol; 1993 Feb; 264(2 Pt 1):C302-10. PubMed ID: 8447363 [TBL] [Abstract][Full Text] [Related]
11. IGF-II/Man-6-P receptors in rat kidney: apical localization in proximal tubule cells. Cui S; Flyvbjerg A; Nielsen S; Kiess W; Christensen EI Kidney Int; 1993 Apr; 43(4):796-807. PubMed ID: 8479115 [TBL] [Abstract][Full Text] [Related]
12. Luminal uptake and intracellular transport of insulin in renal proximal tubules. Hellfritzsch M; Christensen EI; Sonne O Kidney Int; 1986 May; 29(5):983-8. PubMed ID: 3523006 [TBL] [Abstract][Full Text] [Related]
13. Invaginated apical vacuoles in the cells of the proximal convoluted tubule in the rat kidney. Neiss WF Cell Tissue Res; 1984; 235(2):463-6. PubMed ID: 6705047 [TBL] [Abstract][Full Text] [Related]
14. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. Christensen EI; Nielsen S; Moestrup SK; Borre C; Maunsbach AB; de Heer E; Ronco P; Hammond TG; Verroust P Eur J Cell Biol; 1995 Apr; 66(4):349-64. PubMed ID: 7656901 [TBL] [Abstract][Full Text] [Related]
15. Endocytosis in renal proximal tubules. Experimental electron microscopical studies of protein absorption and membrane traffic in isolated, in vitro perfused proximal tubules. Nielsen S Dan Med Bull; 1994 Jun; 41(3):243-63. PubMed ID: 7924457 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural analysis of human proximal tubules and cortical interstitium in chronic renal disease (hydronephrosis). Møller JC; Skriver E; Olsen S; Maunsbach AB Virchows Arch A Pathol Anat Histopathol; 1984; 402(3):209-37. PubMed ID: 6422615 [TBL] [Abstract][Full Text] [Related]
17. Internalization and recycling of glycoprotein 280 in BN/MSV yolk sac epithelial cells: a model system of relevance to receptor-mediated endocytosis in the renal proximal tubule. Le Panse S; Verroust P; Christensen EI Exp Nephrol; 1997; 5(5):375-83. PubMed ID: 9386973 [TBL] [Abstract][Full Text] [Related]
18. Involvement of cathepsins B and H in lysosomal degradation of horseradish peroxidase endocytosed by the proximal tubule cells of the rat kidney: II. Immunocytochemical studies using protein A-gold technique applied to conventional and serial sections. Yokota S; Kato K Anat Rec; 1988 Aug; 221(4):791-801. PubMed ID: 3056113 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructure of isolated perfused proximal tubules from rabbit kidney. A comparison with proximal tubules fixed by perfusion in vivo. Nielsen JT; Christensen EI Lab Invest; 1983 Oct; 49(4):400-11. PubMed ID: 6413781 [TBL] [Abstract][Full Text] [Related]
20. Study on the origin of apical tubules in ileal absorptive cells of suckling rats using concanavalin-A as a membrane-bound tracer. Hatae T; Fujita M; Okuyama K Cell Tissue Res; 1988 Mar; 251(3):511-21. PubMed ID: 3365748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]