These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18073840)

  • 41. Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability.
    Jiang H; Paulsen KD; Osterberg UL; Patterson MS
    Appl Opt; 1997 Jan; 36(1):52-63. PubMed ID: 18250647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-domain geometrical localization of point-like fluorescence inclusions in turbid media with early photon arrival times.
    Pichette J; Domínguez JB; Bérubé-Lauzière Y
    Appl Opt; 2013 Aug; 52(24):5985-99. PubMed ID: 24085003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scattering noise estimation of range-gated imaging system in turbid condition.
    Tan C; Seet G; Sluzek A; Wang X; Yuen CT; Fam CY; Wong HY
    Opt Express; 2010 Sep; 18(20):21147-54. PubMed ID: 20941011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monte Carlo study of pathlength distribution of polarized light in turbid media.
    Guo X; Wood MF; Vitkin A
    Opt Express; 2007 Feb; 15(3):1348-60. PubMed ID: 19532365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media.
    Li P; Liu C; Li X; He H; Ma H
    Appl Opt; 2016 Sep; 55(27):7468-76. PubMed ID: 27661571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics.
    Berrocal E; Meglinski I; Jermy M
    Opt Express; 2005 Nov; 13(23):9181-95. PubMed ID: 19503117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New lattice Boltzmann method for the simulation of three-dimensional radiation transfer in turbid media.
    McHardy C; Horneber T; Rauh C
    Opt Express; 2016 Jul; 24(15):16999-7017. PubMed ID: 27464152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination.
    Joshi N; Donner C; Jensen HW
    Opt Lett; 2006 Apr; 31(7):936-8. PubMed ID: 16599217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3-D superposition for radiotherapy treatment planning using fast Fourier transforms.
    Murray DC; Hoban PW; Metcalfe PE; Round WH
    Australas Phys Eng Sci Med; 1989 Sep; 12(3):128-37. PubMed ID: 2604625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium.
    Kanick SC; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A
    Opt Lett; 2011 Aug; 36(15):2997-9. PubMed ID: 21808384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of an accelerated weighted fluorescence Monte Carlo simulation method with reference methods in multi-layered turbid media.
    Hennig G; Stepp H; Sroka R; Beyer W
    Appl Opt; 2013 Feb; 52(5):1066-75. PubMed ID: 23400069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validity of a closed-form diffusion solution in P1 approximation for reflectance imaging with an oblique beam of arbitrary profile.
    Lu JQ; Chen C; Pravica DW; Brock RS; Hu XH
    Med Phys; 2008 Sep; 35(9):3979-87. PubMed ID: 18841849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient analysis of temporal broadening of a pulsed focused Gaussian beam in scattering media.
    Mar Blanca C; Saloma C
    Appl Opt; 1999 Sep; 38(25):5433-7. PubMed ID: 18324050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium.
    Hall D; Ma G; Lesage F; Wang Y
    Opt Lett; 2004 Oct; 29(19):2258-60. PubMed ID: 15524373
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scatter/primary in mammography: Monte Carlo validation.
    Boone JM; Cooper VN
    Med Phys; 2000 Aug; 27(8):1818-31. PubMed ID: 10984229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media.
    Guo Z; Kumar S
    Appl Opt; 2001 Jul; 40(19):3156-63. PubMed ID: 11958253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium.
    Daria V; Blanca CM; Nakamura O; Kawata S; Saloma C
    Appl Opt; 1998 Dec; 37(34):7960-7. PubMed ID: 18301685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.