These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18073865)

  • 1. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers.
    Clarkson WA; Felgate NS; Hanna DC
    Opt Lett; 1999 Jun; 24(12):820-2. PubMed ID: 18073865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence.
    Sung CL; Cheng HP; Lee CY; Cho CY; Liang HC; Chen YF
    Opt Lett; 2016 Apr; 41(8):1781-4. PubMed ID: 27082344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers.
    Lumer Y; Moshe I; Horovitz Z; Jackel S; Machavariani G; Meir A
    Appl Opt; 2008 Jul; 47(21):3886-91. PubMed ID: 18641758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm.
    Zhou R; Li E; Li H; Wang P; Yao J
    Opt Lett; 2006 Jun; 31(12):1869-71. PubMed ID: 16729098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946-nm.
    Zhou R; Zhang T; Li E; Ding X; Cai Z; Zhang B; Wen W; Wang P; Yao J
    Opt Express; 2005 Dec; 13(25):10115-9. PubMed ID: 19503225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient continuous-wave operation of a Nd:YAG rod laser that is side pumped by p-polarized diode laser bars.
    Kandasamy R; Raghavachari S; Misra P; Nathan ST
    Appl Opt; 2004 Nov; 43(31):5855-9. PubMed ID: 15540443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic reduction of the depolarization in Nd:YAG crystals.
    Puncken O; Tünnermann H; Morehead JJ; Wessels P; Frede M; Neumann J; Kracht D
    Opt Express; 2010 Sep; 18(19):20461-74. PubMed ID: 20940939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM00 mode output.
    Xu YT; Xu JL; Guo YD; Yang FT; Chen YZ; Xu J; Xie SY; Bo Y; Peng QJ; Cui D; Xu ZY
    Appl Opt; 2010 Aug; 49(24):4576-80. PubMed ID: 20733629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers.
    Oka M; Kubota S
    Opt Lett; 1988 Oct; 13(10):805-7. PubMed ID: 19746041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature diode-bar-pumped Nd:YAG laser at 946 nm.
    Clarkson WA; Koch R; Hanna DC
    Opt Lett; 1996 May; 21(10):737-9. PubMed ID: 19876142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond.
    Lubeigt W; Savitski VG; Bonner GM; Geoghegan SL; Friel I; Hastie JE; Dawson MD; Burns D; Kemp AJ
    Opt Express; 2011 Mar; 19(7):6938-44. PubMed ID: 21451719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of intracavity KTP-based Raman generation between Nd:YAP and Nd:YAG lasers operating on the (4)F(3/2) → (4)I(13/2) transition.
    Huang YJ; Chen YF; Chen WD; Zhang G
    Opt Express; 2015 Apr; 23(8):10435-43. PubMed ID: 25969085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced efficiency of a continuous-wave mode-locked Nd:YAG laser by compensation of the thermally induced, polarization-dependent bifocal lens.
    Wetter NU; Maldonado EP; Vieira ND
    Appl Opt; 1993 Sep; 32(27):5280-4. PubMed ID: 20856336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser.
    Meyn JP; Huber G
    Opt Lett; 1994 Sep; 19(18):1436-8. PubMed ID: 19855544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers.
    Ostermeyer M; Klemz G; Kubina P; Menzel R
    Appl Opt; 2002 Dec; 41(36):7573-82. PubMed ID: 12510922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient operation of a diode-bar-pumped Nd:YAG laser on the low-gain 1123-nm line.
    Moore N; Clarkson WA; Hanna DC; Lehmann S; Bösenberg J
    Appl Opt; 1999 Sep; 38(27):5761-4. PubMed ID: 18324088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diode-laser-pumped 1.328-mum Nd:Sr(5)(PO(4))(3) F laser and its intracavity frequency doubling.
    Zhao S; Wang Q; Zhang X; Wang S; Zhao L; Sun L; Zhang S
    Appl Opt; 1997 Oct; 36(30):7756-9. PubMed ID: 18264296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617  nm.
    Yu Z; Wang M; Hou X; Chen W
    Appl Opt; 2014 Dec; 53(34):8032-5. PubMed ID: 25607959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approach for power scaling solid-state lasers with intracavity motion.
    Eckold M; Mackenzie JI; Clarkson WA
    Opt Lett; 2017 Feb; 42(4):775-778. PubMed ID: 28198860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects.
    Moshe I; Jackel S; Meir A
    Opt Lett; 2003 May; 28(10):807-9. PubMed ID: 12779153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.