BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18074023)

  • 1. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere.
    Sayer EJ; Powers JS; Tanner EV
    PLoS One; 2007 Dec; 2(12):e1299. PubMed ID: 18074023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere.
    Cleveland CC; Wieder WR; Reed SC; Townsend AR
    Ecology; 2010 Aug; 91(8):2313-23. PubMed ID: 20836453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.
    Cleveland CC; Townsend AR
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10316-10321. PubMed ID: 16793925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest.
    Lyu M; Giardina CP; Litton CM
    Glob Chang Biol; 2021 Aug; 27(16):3824-3836. PubMed ID: 33934457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct responses of soil respiration to experimental litter manipulation in temperate woodland and tropical forest.
    Bréchet LM; Lopez-Sangil L; George C; Birkett AJ; Baxendale C; Castro Trujillo B; Sayer EJ
    Ecol Evol; 2018 Apr; 8(7):3787-3796. PubMed ID: 29686858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global effects of plant litter alterations on soil CO
    Chen X; Chen HYH
    Glob Chang Biol; 2018 Aug; 24(8):3462-3471. PubMed ID: 29575583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects.
    Rodtassana C; Tanner EVJ
    Ecology; 2018 Mar; 99(3):735-742. PubMed ID: 29336482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate implications on forest above- and belowground carbon allocation patterns along a tropical elevation gradient on Mt. Kilimanjaro (Tanzania).
    Sierra Cornejo N; Leuschner C; Becker JN; Hemp A; Schellenberger Costa D; Hertel D
    Oecologia; 2021 Mar; 195(3):797-812. PubMed ID: 33630169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests.
    Riutta T; Kho LK; Teh YA; Ewers R; Majalap N; Malhi Y
    Glob Chang Biol; 2021 May; 27(10):2225-2240. PubMed ID: 33462919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature influences carbon accumulation in moist tropical forests.
    Raich JW; Russell AE; Kitayama K; Parton WJ; Vitousek PM
    Ecology; 2006 Jan; 87(1):76-87. PubMed ID: 16634298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of litterfall input on soil respiration and its temperature sensitivity in moso bamboo forest under simulated drought.].
    Ge XG; Tong R; Cao YH; Zhou BZ; Xiao WF; Wang XM; Lu RF
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2233-2242. PubMed ID: 30039661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.
    Fan J; Wang J; Zhao B; Wu L; Zhang C; Zhao X; Gadow KV
    PLoS One; 2015; 10(5):e0126337. PubMed ID: 25970791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability.
    King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K
    Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labile carbon retention compensates for CO2 released by priming in forest soils.
    Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y
    Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal variations in litterfall biomass input and nutrient return under long-term prescribed burning in a wet sclerophyll forest, Queensland, Australia.
    Muqaddas B; Lewis T
    Sci Total Environ; 2020 Mar; 706():136035. PubMed ID: 31841841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
    Uriarte M; Turner BL; Thompson J; Zimmerman JK
    Ecol Appl; 2015 Oct; 25(7):2022-34. PubMed ID: 26591466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.
    Campo J; Merino A
    Glob Chang Biol; 2016 May; 22(5):1942-56. PubMed ID: 26913708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.