These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18074270)

  • 21. Photochemistry of 2-(4-hydroxystyryl)-1-naphthopyrylium.
    Gavara R; Leydet Y; Petrov V; Pina F
    Photochem Photobiol Sci; 2012 Nov; 11(11):1691-9. PubMed ID: 22797713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The synthesis and the solvent and substituent effect on the spectroscopic characteristic of 3-ethyl-2-(p-substitued styryl)benzothiazolium iodides.
    Kabatc J; Jedrzejewska B; Orliński P; Paczkowski J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):115-25. PubMed ID: 16257702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Over the rainbow: 25 years of confocal imaging.
    Paddock S
    Biotechniques; 2008 Apr; 44(5):643-4, 646, 648. PubMed ID: 18474039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface.
    Estrada LC; Martinez OE; Brunstein M; Bouchoule S; Le-Gratiet L; Talneau A; Sagnes I; Monnier P; Levenson JA; Yacomotti AM
    Opt Express; 2010 Feb; 18(4):3693-9. PubMed ID: 20389379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
    Periasamy A; Skoglund P; Noakes C; Keller R
    Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Confocal and multi-photon microscopy of dental hard tissues and biomaterials.
    Watson TF; Azzopardi A; Etman M; Cheng PC; Sidhu SK
    Am J Dent; 2000 Nov; 13(Spec No):19D-24D. PubMed ID: 11763913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochemical localization of catalase and peroxidase in sinusoidal cells of rat liver.
    Fahimi HD; Gray BA; Herzog VK
    Lab Invest; 1976 Feb; 34(2):192-201. PubMed ID: 55517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of different detection methods in quantitative microdensitometry.
    Ermert L; Hocke AC; Duncker HR; Seeger W; Ermert M
    Am J Pathol; 2001 Feb; 158(2):407-17. PubMed ID: 11159179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytochemical localization of endogenous peroxidase activity in renal medullary collecting tubules and papillary mucosa of the rat.
    Cavallo T
    Lab Invest; 1976 Mar; 34(3):223-8. PubMed ID: 943031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences.
    De Giorgi V; Massi D; Sestini S; Cicchi R; Pavone FS; Lotti T
    J Eur Acad Dermatol Venereol; 2009 Mar; 23(3):314-6. PubMed ID: 19207664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jenfluor ap--a novel fluorogenic substrate for in situ detection of alkaline phosphatase activity.
    Halbhuber KJ; Krieg R; Fischer P; König K; Nasse H; Dietz W
    Cell Mol Biol (Noisy-le-grand); 2002; 48 Online Pub():OL343-58. PubMed ID: 12643452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-photon fluorescence excitation and related techniques in biological microscopy.
    Diaspro A; Chirico G; Collini M
    Q Rev Biophys; 2005 May; 38(2):97-166. PubMed ID: 16478566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalyzed reporter deposition-fluorescent in situ hybridization (CARD-FISH) detection of Dehalococcoides.
    Dijk JA; Breugelmans P; Philips J; Haest PJ; Smolders E; Springael D
    J Microbiol Methods; 2008 May; 73(2):142-7. PubMed ID: 18410973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Optical imaging of fluorescence in the near infrared. From passive to enzymatically activated contrast medium].
    Funovics M
    Radiologe; 2007 Jan; 47(1):53-61. PubMed ID: 17216511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of immunofluorescence methods by quantitative image analysis.
    Mosedale DE; Metcalfe JC; Grainger DJ
    J Histochem Cytochem; 1996 Sep; 44(9):1043-50. PubMed ID: 8773570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose oxidase immunoenzyme methodology as a substitute for fluorescence microscopy in the clinical laboratory.
    Rathlev T; Hocko JM; Franks GF; Suffin SC; O'Donnell CM; Porter DD
    Clin Chem; 1981 Sep; 27(9):1513-5. PubMed ID: 7020996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new direct fluorescent method for protease histochemistry, using amino-styryl-quinoline as leaving group.
    Garrett JR; Kyriacou K; Rasnick D; Smith RE
    J Microsc; 1984 Oct; 136(Pt 1):RP1-2. PubMed ID: 6392557
    [No Abstract]   [Full Text] [Related]  

  • 39. Immunohistochemistry for light microscopy in safety evaluation of therapeutic agents: an overview.
    Burnett R; Guichard Y; Barale E
    Toxicology; 1997 Apr; 119(1):83-93. PubMed ID: 9129199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing the crystal structures and spectroscopic properties of a
    Todorova M; Seidel RW; Stoyanova M; Kolev TM; Bakalska R
    Heliyon; 2024 Apr; 10(8):e29315. PubMed ID: 38681551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.