These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18074345)

  • 1. Time-averaged predictions of folded and misfolded peptides using a reduced physicochemical model.
    Clarke OJ; Parker MJ
    J Comput Chem; 2008 May; 29(7):1177-85. PubMed ID: 18074345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase diagram of alpha-helical and beta-sheet forming peptides.
    Auer S; Kashchiev D
    Phys Rev Lett; 2010 Apr; 104(16):168105. PubMed ID: 20482086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations.
    Derreumaux P
    Phys Rev Lett; 2000 Jul; 85(1):206-9. PubMed ID: 10991195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of secondary structures in polypetides. A Monte Carlo simulation.
    Sikorski A; Romiszowski P
    Acta Pol Pharm; 2002; 59(6):466-9. PubMed ID: 12669774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations aimed at structure prediction of supersecondary motifs in proteins.
    Forcellino F; Derreumaux P
    Proteins; 2001 Nov; 45(2):159-66. PubMed ID: 11562945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-helix and beta-hairpin Folding from experiment, analytical theory and molecular dynamics simulations.
    Galzitskaya OV; Higo J; Finkelstein AV
    Curr Protein Pept Sci; 2002 Apr; 3(2):191-200. PubMed ID: 12188903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide.
    Chen Y; Zhang Q; Ding J
    J Chem Phys; 2004 Feb; 120(7):3467-74. PubMed ID: 15268504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study.
    Lam AR; Teplow DB; Stanley HE; Urbanc B
    J Am Chem Soc; 2008 Dec; 130(51):17413-22. PubMed ID: 19053400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly and kinetic folding pathways of a tetrameric beta-sheet complex: molecular dynamics simulations on simplified off-lattice protein models.
    Jang H; Hall CK; Zhou Y
    Biophys J; 2004 Jan; 86(1 Pt 1):31-49. PubMed ID: 14695247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding.
    Griffiths-Jones SR; Maynard AJ; Searle MS
    J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of the entropy and free energy by the hypothetical scanning Monte Carlo method: application to peptides.
    Cheluvaraja S; Meirovitch H
    J Chem Phys; 2005 Feb; 122(5):54903. PubMed ID: 15740349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of protein folding probability from equilibrium simulations.
    Rao F; Settanni G; Guarnera E; Caflisch A
    J Chem Phys; 2005 May; 122(18):184901. PubMed ID: 15918759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations.
    Collet O; Chipot C
    J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding pathways and rates for the three-stranded beta-sheet peptide Beta3s using discrete path sampling.
    Carr JM; Wales DJ
    J Phys Chem B; 2008 Jul; 112(29):8760-9. PubMed ID: 18588333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kMC-MD method with generalized move-sets for the simulation of folding of α-helical and β-stranded peptides.
    Peter EK; Pivkin IV; Shea JE
    J Chem Phys; 2015 Apr; 142(14):144903. PubMed ID: 25877593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lattice protein with an amyloidogenic latent state: stability and folding kinetics.
    Palyanov AY; Krivov SV; Karplus M; Chekmarev SF
    J Phys Chem B; 2007 Mar; 111(10):2675-87. PubMed ID: 17315918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and thermodynamics of beta-hairpin assembly: insights from various simulation techniques.
    Kolinski A; Ilkowski B; Skolnick J
    Biophys J; 1999 Dec; 77(6):2942-52. PubMed ID: 10585918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of kinetic traps and enhanced protein folding by strategic substitution of amino acids in a model alpha-helical hairpin peptide.
    Chapagain PP; Gerstman BS
    Biopolymers; 2006 Feb; 81(3):167-78. PubMed ID: 16215990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of beta-amyloid fragments.
    Meinke JH; Hansmann UH
    J Chem Phys; 2007 Jan; 126(1):014706. PubMed ID: 17212510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.