These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18075081)

  • 21. AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales.
    Bai Y; Mellage A; Cirpka OA; Sun T; Angenent LT; Haderlein SB; Kappler A
    Environ Sci Technol; 2020 Apr; 54(7):4131-4139. PubMed ID: 32108470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of tetracycline with aluminum and iron hydrous oxides.
    Gu C; Karthikeyan KG
    Environ Sci Technol; 2005 Apr; 39(8):2660-7. PubMed ID: 15884363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
    Luan FB; Xie L; Li J; Zhou Q
    Huan Jing Ke Xue; 2009 Jul; 30(7):1937-41. PubMed ID: 19774988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pu(V)O2+ adsorption and reduction by synthetic hematite and goethite.
    Powell BA; Fjeld RA; Kaplan DI; Coates JT; Serkiz SM
    Environ Sci Technol; 2005 Apr; 39(7):2107-14. PubMed ID: 15871244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite.
    Shi Z; Zachara JM; Shi L; Wang Z; Moore DA; Kennedy DW; Fredrickson JK
    Environ Sci Technol; 2012 Nov; 46(21):11644-52. PubMed ID: 22985396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical evidences for promoted interfacial reactions: the role of Fe(II) adsorbed onto gamma-Al2O3 and TiO2 in reductive transformation of 2-nitrophenol.
    Li FB; Tao L; Feng CH; Li XZ; Sun KW
    Environ Sci Technol; 2009 May; 43(10):3656-61. PubMed ID: 19544869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading.
    Han J; Ro HM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of Wüstite (FeO) dissolution: implications for reductive dissolution of ferric oxides.
    Jang JH; Brantley SL
    Environ Sci Technol; 2009 Feb; 43(4):1086-90. PubMed ID: 19320162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.
    Yu L; Wang S; Tang QW; Cao MY; Li J; Yuan K; Wang P; Li WW
    Appl Microbiol Biotechnol; 2016 May; 100(10):4617-25. PubMed ID: 26762391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments.
    Kocar BD; Fendorf S
    Environ Sci Technol; 2009 Jul; 43(13):4871-7. PubMed ID: 19673278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron oxide surface-catalyzed oxidation of ferrous iron by monochloramine: implications of oxide type and carbonate on reactivity.
    Vikesland PJ; Valentine RL
    Environ Sci Technol; 2002 Feb; 36(3):512-9. PubMed ID: 11871569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
    Arnold RG; DiChristina TJ; Hoffmann MR
    Biotechnol Bioeng; 1988 Oct; 32(9):1081-96. PubMed ID: 18587827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of humic acid and ouinone model compounds in bromate reduction by zerovalent iron.
    Xie L; Shang C
    Environ Sci Technol; 2005 Feb; 39(4):1092-100. PubMed ID: 15773482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes.
    Sracek O; Berg M; Müller B
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15954-15961. PubMed ID: 29589241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes
    Dong Y; Sanford RA; Boyanov MI; Flynn TM; O'Loughlin EJ; Kemner KM; George S; Fouke KE; Li S; Huang D; Li S; Fouke BW
    Environ Sci Technol; 2020 Aug; 54(16):10128-10140. PubMed ID: 32693580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron Atom Exchange between Hematite and Aqueous Fe(II).
    Frierdich AJ; Helgeson M; Liu C; Wang C; Rosso KM; Scherer MM
    Environ Sci Technol; 2015 Jul; 49(14):8479-86. PubMed ID: 26069932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium.
    Borch T; Inskeep WP; Harwood JA; Gerlach R
    Environ Sci Technol; 2005 Sep; 39(18):7126-33. PubMed ID: 16201638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conduction Band of Hematite Can Mediate Cytochrome Reduction by Fe(II) under Dark and Anoxic Conditions.
    Liu T; Wang Y; Liu C; Li X; Cheng K; Wu Y; Fang L; Li F; Liu C
    Environ Sci Technol; 2020 Apr; 54(8):4810-4819. PubMed ID: 32084309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.