These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18075081)

  • 41. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances.
    Bauer I; Kappler A
    Environ Sci Technol; 2009 Jul; 43(13):4902-8. PubMed ID: 19673283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions.
    Bassez MP
    Orig Life Evol Biosph; 2018 Sep; 48(3):289-320. PubMed ID: 30091010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics and energetics of phosphate sorption in a multi-component Al(III)-Fe(III) hydr(oxide) sorbent system.
    Harvey OR; Rhue RD
    J Colloid Interface Sci; 2008 Jun; 322(2):384-93. PubMed ID: 18433764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.
    Bligh MW; Maheshwari P; David Waite T
    Water Res; 2017 Nov; 124():341-352. PubMed ID: 28780358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemical properties of the interaction between cytochrome c and a hematite nanowire array electrode.
    Wang H; Johs A; Browning JF; Tennant DA; Liang L
    Bioelectrochemistry; 2019 Oct; 129():162-169. PubMed ID: 31176253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Competing Fe (II)-induced mineralization pathways of ferrihydrite.
    Hansel CM; Benner SG; Fendorf S
    Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism.
    Rakshit S; Sallman B; Davantés A; Lefèvre G
    Chemosphere; 2017 Feb; 168():685-691. PubMed ID: 27836284
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.
    Liu G; Qiu S; Liu B; Pu Y; Gao Z; Wang J; Jin R; Zhou J
    Sci Rep; 2017 Mar; 7():45354. PubMed ID: 28358048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arsenic sorption onto natural hematite, magnetite, and goethite.
    Giménez J; Martínez M; de Pablo J; Rovira M; Duro L
    J Hazard Mater; 2007 Mar; 141(3):575-80. PubMed ID: 16978766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of crystalline and amorphous iron- and aluminum hydroxides on mechanisms of phosphate adsorption and desorption.
    Gypser S; Hirsch F; Schleicher AM; Freese D
    J Environ Sci (China); 2018 Aug; 70():175-189. PubMed ID: 30037404
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens.
    Doong RA; Schink B
    Environ Sci Technol; 2002 Jul; 36(13):2939-45. PubMed ID: 12144271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abiotic reduction of nitroaromatic compounds by Fe(II) associated with iron oxides and humic acid.
    Luan F; Xie L; Li J; Zhou Q
    Chemosphere; 2013 May; 91(7):1035-41. PubMed ID: 23422171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of Microbial Activity and Anthraquinone-2,7-disulfonate as a Model of Humic Substances in Leaching of Iron from Hematite into Seawater.
    Aneksampant A; Tanaka A; Tu X; Iwai H; Yamamoto M; Nakashima K; Fukushima M
    Anal Sci; 2018 Nov; 34(11):1303-1308. PubMed ID: 30078814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS).
    Yang Y; Peng H; Niu J; Zhao Z; Zhang Y
    Environ Pollut; 2019 Apr; 247():973-979. PubMed ID: 30823352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of As(III) on porous hematite synthesized from goethite concentrate.
    Yang X; Xia L; Li J; Dai M; Yang G; Song S
    Chemosphere; 2017 Feb; 169():188-193. PubMed ID: 27880918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic effect of reductive and ligand-promoted dissolution of goethite.
    Wang Z; Schenkeveld WD; Kraemer SM; Giammar DE
    Environ Sci Technol; 2015 Jun; 49(12):7236-44. PubMed ID: 25965980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.