These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18075086)

  • 41. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II).
    Islam FS; Pederick RL; Gault AG; Adams LK; Polya DA; Charnock JM; Lloyd JR
    Appl Environ Microbiol; 2005 Dec; 71(12):8642-8. PubMed ID: 16332858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits.
    Field HR; Whitaker AH; Henson JA; Duckworth OW
    Sci Total Environ; 2019 Dec; 697():134111. PubMed ID: 31487593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1.
    Pantke C; Obst M; Benzerara K; Morin G; Ona-Nguema G; Dippon U; Kappler A
    Environ Sci Technol; 2012 Feb; 46(3):1439-46. PubMed ID: 22201257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Iron Vacancy Accelerates Fe(II)-Induced Anoxic As(III) Oxidation Coupled to Iron Reduction.
    Fang L; Hong Z; Borch T; Shi Q; Li F
    Environ Sci Technol; 2023 Feb; 57(5):2175-2185. PubMed ID: 36693009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactivity of Fe(II) species associated with clay minerals.
    Hofstetter TB; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2003 Feb; 37(3):519-28. PubMed ID: 12630467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
    Laufer K; Byrne JM; Glombitza C; Schmidt C; Jørgensen BB; Kappler A
    Environ Microbiol; 2016 Sep; 18(9):3159-74. PubMed ID: 27234371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hexahydro-1,3,5-trinitro-1,3,5-triazine transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates.
    Williams AG; Gregory KB; Parkin GF; Scherer MM
    Environ Sci Technol; 2005 Jul; 39(14):5183-9. PubMed ID: 16086451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual element (CCl) isotope approach to distinguish abiotic reactions of chlorinated methanes by Fe(0) and by Fe(II) on iron minerals at neutral and alkaline pH.
    Rodríguez-Fernández D; Heckel B; Torrentó C; Meyer A; Elsner M; Hunkeler D; Soler A; Rosell M; Domènech C
    Chemosphere; 2018 Sep; 206():447-456. PubMed ID: 29758502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanogoethite formation from oxidation of Fe(II) sorbed on aluminum oxide: implications for contaminant reduction.
    Larese-Casanova P; Cwiertny DM; Scherer MM
    Environ Sci Technol; 2010 May; 44(10):3765-71. PubMed ID: 20408543
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.
    Xiao W; Jones AM; Collins RN; Waite TD
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1760-1769. PubMed ID: 29751097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments.
    Lee S; O'Loughlin EJ; Kwon MJ
    J Environ Manage; 2021 Aug; 292():112756. PubMed ID: 33984641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary).
    Farkas M; Szoboszlay S; Benedek T; Révész F; Veres PG; Kriszt B; Táncsics A
    Folia Microbiol (Praha); 2017 Jan; 62(1):63-71. PubMed ID: 27680983
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments.
    Shao H; Butler EC
    Chemosphere; 2007 Aug; 68(10):1807-13. PubMed ID: 17537483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transient O
    Wilmoth JL; Moran MA; Thompson A
    Microbiome; 2018 Oct; 6(1):189. PubMed ID: 30352628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga.
    Jahn MK; Haderlein SB; Meckenstock RU
    Environ Microbiol; 2006 Feb; 8(2):362-7. PubMed ID: 16423022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions.
    Pearce CI; Wilkins MJ; Zhang C; Heald SM; Fredrickson JK; Zachara JM
    Environ Sci Technol; 2012 Aug; 46(15):7992-8000. PubMed ID: 22731932
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PAH dissipation in a contaminated river sediment under oxic and anoxic conditions.
    Quantin C; Joner EJ; Portal JM; Berthelin J
    Environ Pollut; 2005 Mar; 134(2):315-22. PubMed ID: 15589658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.
    Liao P; Al-Ani Y; Malik Ismael Z; Wu X
    Sci Rep; 2015 Mar; 5():9239. PubMed ID: 25783864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Imaging redox activity and Fe(II) at the microbe-mineral interface during Fe(III) reduction.
    Downie HF; Standerwick JP; Burgess L; Natrajan LS; Lloyd JR
    Res Microbiol; 2018 Dec; 169(10):582-589. PubMed ID: 29886258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.