These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18075086)

  • 61. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.
    Liu W; Langenhoff AAM; Sutton NB; Rijnaarts HHM
    Chemosphere; 2018 Oct; 208():122-130. PubMed ID: 29864703
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Carbonate Minerals and Dissimilatory Iron-Reducing Organisms Trigger Synergistic Abiotic and Biotic Chain Reactions under Elevated CO
    Li S; Feng Q; Liu J; He Y; Shi L; Boyanov MI; O'Loughlin EJ; Kemner KM; Sanford RA; Shao H; He X; Sheng A; Cheng H; Shen C; Tu W; Dong Y
    Environ Sci Technol; 2022 Nov; 56(22):16428-16440. PubMed ID: 36301735
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Arsenic(V) Incorporation in Vivianite during Microbial Reduction of Arsenic(V)-Bearing Biogenic Fe(III) (Oxyhydr)oxides.
    Muehe EM; Morin G; Scheer L; Pape PL; Esteve I; Daus B; Kappler A
    Environ Sci Technol; 2016 Mar; 50(5):2281-91. PubMed ID: 26828118
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.
    Tao L; Zhu ZK; Li FB; Wang SL
    Chemosphere; 2017 Nov; 187():43-51. PubMed ID: 28834771
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of Fe(III) source, light quality, photon flux and presence of oxygen on photoreduction of Fe(III)-organic complexes - Implications for light-influenced coastal freshwater and marine sediments.
    Lueder U; Jørgensen BB; Maisch M; Schmidt C; Kappler A
    Sci Total Environ; 2022 Mar; 814():152767. PubMed ID: 34982989
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer.
    Jakus N; Mellage A; Höschen C; Maisch M; Byrne JM; Mueller CW; Grathwohl P; Kappler A
    Environ Sci Technol; 2021 Jul; 55(14):9876-9884. PubMed ID: 34247483
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.
    Zhang T; Tremblay PL; Chaurasia AK; Smith JA; Bain TS; Lovley DR
    Appl Environ Microbiol; 2013 Dec; 79(24):7800-6. PubMed ID: 24096430
    [TBL] [Abstract][Full Text] [Related]  

  • 71. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.
    Liu T; Li X; Zhang W; Hu M; Li F
    J Colloid Interface Sci; 2014 Jun; 423():25-32. PubMed ID: 24703664
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Abiotic degradation of pentachloronitrobenzene by Fe(III): reactions on goethite and iron oxide nanoparticles.
    Klupinski TP; Chin YP; Traina SJ
    Environ Sci Technol; 2004 Aug; 38(16):4353-60. PubMed ID: 15382864
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of dissolved organic matter and Fe(II) on the abiotic reduction of pentachloronitrobenzene.
    Hakala JA; Chin YP; Weber EJ
    Environ Sci Technol; 2007 Nov; 41(21):7337-42. PubMed ID: 18044508
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis.
    Childers SE; Ciufo S; Lovley DR
    Nature; 2002 Apr; 416(6882):767-9. PubMed ID: 11961561
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III).
    Yan S; Chen Y; Xiang W; Bao Z; Liu C; Deng B
    Chemosphere; 2014 Dec; 117():625-30. PubMed ID: 25461927
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction.
    Fritzsche A; Bosch J; Sander M; Schröder C; Byrne JM; Ritschel T; Joshi P; Maisch M; Meckenstock RU; Kappler A; Totsche KU
    Environ Sci Technol; 2021 Aug; 55(15):10821-10831. PubMed ID: 34288663
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation.
    Orsetti S; Laskov C; Haderlein SB
    Environ Sci Technol; 2013 Dec; 47(24):14161-8. PubMed ID: 24266388
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002.
    Swanner ED; Bayer T; Wu W; Hao L; Obst M; Sundman A; Byrne JM; Michel FM; Kleinhanns IC; Kappler A; Schoenberg R
    Environ Sci Technol; 2017 May; 51(9):4897-4906. PubMed ID: 28402123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.