BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18075113)

  • 1. Comment on "1,1,2,2-Tetrachloroethane reactions with OH-, Cr(II), granular iron, and a copper-iron bimetal: insights from product formation and associated carbon isotope fractionation".
    Noubactep C
    Environ Sci Technol; 2007 Nov; 41(22):7947-8; author reply 7949-50. PubMed ID: 18075113
    [No Abstract]   [Full Text] [Related]  

  • 2. 1,1,2,2-tetrachloroethane reactions with OH-, Cr(II), granular iron, and a copper-iron bimetal: insights from product formation and associated carbon isotope fractionation.
    Elsner M; Cwiertny DM; Roberts AL; Lollar BS
    Environ Sci Technol; 2007 Jun; 41(11):4111-7. PubMed ID: 17612198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI).
    Xie Y; Cwiertny DM
    Environ Sci Technol; 2012 Aug; 46(15):8365-73. PubMed ID: 22780331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems.
    Xie Y; Cwiertny DM
    Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron.
    Elsner M; Chartrand M; Vanstone N; Couloume GL; Lollar BS
    Environ Sci Technol; 2008 Aug; 42(16):5963-70. PubMed ID: 18767652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon and chlorine isotope effects during abiotic reductive dechlorination of polychlorinated ethanes.
    Hofstetter TB; Reddy CM; Heraty LJ; Berg M; Sturchio NC
    Environ Sci Technol; 2007 Jul; 41(13):4662-8. PubMed ID: 17695912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the dechlorination mechanism of hexachloroethane by Pd-doped zerovalent iron microparticles in dissolved lactic acid polymers using chromatography and indirect monitoring of iron corrosion.
    Rodrigues R; Betelu S; Colombano S; Masselot G; Tzedakis T; Ignatiadis I
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7177-7194. PubMed ID: 30652270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities.
    Lorah MM; Voytek MA
    J Contam Hydrol; 2004 May; 70(1-2):117-45. PubMed ID: 15068871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Results of biologic exposure tests in relation to passive dosimetry measurements of room air concentrations in occupational exposure to tetrachloroethane in chemical dry-cleaning establishments].
    Pannier R; Hübner G; Schulz G
    Z Gesamte Hyg; 1986 May; 32(5):297-300. PubMed ID: 3751167
    [No Abstract]   [Full Text] [Related]  

  • 10. Dechlorination of pentachloroethane by commercial Fe and ferruginous smectite.
    Cervini-Silva J; Larson RA; Wu J; Stucki JW
    Chemosphere; 2002 Jun; 47(9):971-6. PubMed ID: 12108704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersive liquid-liquid-liquid microextraction combined with liquid chromatography for the determination of chlorophenoxy acid herbicides in aqueous samples.
    Tsai WC; Huang SD
    J Chromatogr A; 2009 Nov; 1216(45):7846-50. PubMed ID: 19804887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO
    Pei X; Jiang C; Chen W
    Environ Pollut; 2019 Dec; 255(Pt 1):113211. PubMed ID: 31541836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust iron coordination complexes with N-based neutral ligands as efficient Fenton-like catalysts at neutral pH.
    Canals M; Gonzalez-Olmos R; Costas M; Company A
    Environ Sci Technol; 2013 Sep; 47(17):9918-27. PubMed ID: 23895017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of hexachloroethane by Fenton's reagents.
    Jho EH; Singhal N; Turner S
    Water Sci Technol; 2008; 58(11):2211-4. PubMed ID: 19092198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption.
    Höhener P; Yu X
    J Contam Hydrol; 2012 Mar; 129-130():54-61. PubMed ID: 22055158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium isotopes and the fate of hexavalent chromium in the environment.
    Ellis AS; Johnson TM; Bullen TD
    Science; 2002 Mar; 295(5562):2060-2. PubMed ID: 11896274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.
    Chen W; Ni J
    Chemosphere; 2017 May; 175():323-331. PubMed ID: 28235741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reductive dechlorination of chlorinated hydrocarbons in water by Ag/Fe catalytic reduction system].
    Wu DL; Wang HW; Ma LM
    Huan Jing Ke Xue; 2006 Sep; 27(9):1802-7. PubMed ID: 17117636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar-derived organic carbon promoting the dehydrochlorination of 1,1,2,2-tetrachloroethane and its molecular size effects: Synergies of dipole-dipole and conjugate bases.
    Chen W; Yu S; Zhang H; Wei R; Ni J; Farooq U; Qi Z
    Water Res; 2024 Aug; 259():121812. PubMed ID: 38810344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.