These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 18075274)
1. Preclinical assessment of therapeutic antibodies against human CD40 and human interleukin-12/23p40 in a nonhuman primate model of multiple sclerosis. 't Hart BA; Hintzen RQ; Laman JD Neurodegener Dis; 2008; 5(1):38-52. PubMed ID: 18075274 [TBL] [Abstract][Full Text] [Related]
2. Protection of marmoset monkeys against EAE by treatment with a murine antibody blocking CD40 (mu5D12). Laman JD; 't Hart BA; Brok H; Meurs Mv; Schellekens MM; Kasran A; Boon L; Bauer J; Boer Md; Ceuppens J Eur J Immunol; 2002 Aug; 32(8):2218-28. PubMed ID: 12209634 [TBL] [Abstract][Full Text] [Related]
3. Targeting the tetraspanin CD81 blocks monocyte transmigration and ameliorates EAE. Dijkstra S; Kooij G; Verbeek R; van der Pol SM; Amor S; Geisert EE; Dijkstra CD; van Noort JM; Vries HE Neurobiol Dis; 2008 Sep; 31(3):413-21. PubMed ID: 18586096 [TBL] [Abstract][Full Text] [Related]
4. Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Steinman L; Zamvil SS Trends Immunol; 2005 Nov; 26(11):565-71. PubMed ID: 16153891 [TBL] [Abstract][Full Text] [Related]
5. Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). 't Hart BA; Massacesi L J Neuropathol Exp Neurol; 2009 Apr; 68(4):341-55. PubMed ID: 19337065 [TBL] [Abstract][Full Text] [Related]
6. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Garay L; Gonzalez Deniselle MC; Gierman L; Meyer M; Lima A; Roig P; De Nicola AF Neuroimmunomodulation; 2008; 15(1):76-83. PubMed ID: 18667803 [TBL] [Abstract][Full Text] [Related]
7. New immunosuppressants with potential implication in multiple sclerosis. Gonsette RE J Neurol Sci; 2004 Aug; 223(1):87-93. PubMed ID: 15261567 [TBL] [Abstract][Full Text] [Related]
8. The translation of drug efficacy from in vivo models to human disease with special reference to experimental autoimmune encephalomyelitis and multiple sclerosis. Bolton C Inflammopharmacology; 2007 Oct; 15(5):183-7. PubMed ID: 17943249 [TBL] [Abstract][Full Text] [Related]
9. Hematopoietic stem cell transplantation in multiple sclerosis: experimental evidence to rethink the procedures. Karussis D; Slavin S J Neurol Sci; 2004 Aug; 223(1):59-64. PubMed ID: 15261562 [TBL] [Abstract][Full Text] [Related]
10. Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). Laman JD; van Meurs M; Schellekens MM; de Boer M; Melchers B; Massacesi L; Lassmann H; Claassen E; Hart BA J Neuroimmunol; 1998 Jun; 86(1):30-45. PubMed ID: 9655470 [TBL] [Abstract][Full Text] [Related]
11. Cutting edge: Natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. Coisne C; Mao W; Engelhardt B J Immunol; 2009 May; 182(10):5909-13. PubMed ID: 19414741 [TBL] [Abstract][Full Text] [Related]
12. Dacetuzumab, a humanized mAb against CD40 for the treatment of hematological malignancies. Khubchandani S; Czuczman MS; Hernandez-Ilizaliturri FJ Curr Opin Investig Drugs; 2009 Jun; 10(6):579-87. PubMed ID: 19513947 [TBL] [Abstract][Full Text] [Related]
13. Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Chitnis T; Khoury SJ J Allergy Clin Immunol; 2003 Nov; 112(5):837-49; quiz 850. PubMed ID: 14610467 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the validity of animal models for research into therapies for immune-based disorders. 't Hart BA; Amor S; Jonker M Drug Discov Today; 2004 Jun; 9(12):517-24. PubMed ID: 15183159 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic effects of combined treatment with ribavirin and tiazofurin on experimental autoimmune encephalomyelitis development: clinical and histopathological evaluation. Stojkov D; Lavrnja I; Pekovic S; Dacic S; Bjelobaba I; Mostarica-Stojkovic M; Stosic-Grujicic S; Jovanovic S; Nedeljkovic N; Rakic L; Stojiljkovic M J Neurol Sci; 2008 Apr; 267(1-2):76-85. PubMed ID: 17996253 [TBL] [Abstract][Full Text] [Related]
17. Beneficial actions of oleanolic acid in an experimental model of multiple sclerosis: a potential therapeutic role. Martín R; Carvalho-Tavares J; Hernández M; Arnés M; Ruiz-Gutiérrez V; Nieto ML Biochem Pharmacol; 2010 Jan; 79(2):198-208. PubMed ID: 19679109 [TBL] [Abstract][Full Text] [Related]
18. Significance of autoreactive T cells in diseases such as multiple sclerosis using an innovative primate model. McFarland HF J Clin Invest; 1994 Sep; 94(3):921-2. PubMed ID: 8083376 [No Abstract] [Full Text] [Related]
19. Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis. Thessen Hedreul M; Gillett A; Olsson T; Jagodic M; Harris RA J Neuroimmunol; 2009 May; 210(1-2):30-9. PubMed ID: 19269041 [TBL] [Abstract][Full Text] [Related]